Газотурбинные двигатели (ГТД). Тупиковая ветвь эволюции

Сегодня среднестатистический обыватель знаком с устройством и принципом работы мотора внутреннего сгорания, а вот газотурбинный двигатель, приводит пользователя в тупик. Тем не менее принцип действия турбинного агрегата намного проще поршневого мотора. Из-за особенностей эксплуатации, первый нашёл применение в авиации, второй установлен на 90% штатных автомобилей.

По классификации, силовая установка относится к тепловым устройствам, поскольку трансформирует выделившийся напор от горения в работу механики. В противовес агрегату с поршнями, проходящее преобразование течёт в непрерывной газовой струе, а это влияет на конструкцию и эксплуатацию. Попытки установить газотурбинный мотор на машины предпринимаются постоянно, однако массового развития идея не получила.

Газотурбинный двигатель:

Газотурбинный двс

Двухпоршневой и малоразмерный двигатель

Наиболее распространен двигатель с двумя валами, оборудованный теплообменником. В сравнении с агрегатами, у которых всего 1 вал, такие аппараты более эффективные и мощные. 2-х вальный двигатель оснащен турбинами, одна из которых предназначена для привода компрессора, а другая для привода осей.

Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

Также существуют малоразмерные газотурбинные двигатели. Они состоят из компрессора, газо-воздушного теплообменника, камеры сгорания и двух турбин, одна из которых находятся в одном корпусе со сборником газа.

Малоразмерные газотурбинные двигатели применяются в основном на самолетах и вертолетах, которые преодолевают большие расстояние, а также на беспилотных летательных устройств и ВСУ.

Устройство системы турбонаддува

На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых. Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала. Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.

В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.

Принцип работы турбины

Система турбонаддува состоит из следующих элементов:

  • Воздухозаборник;
  • Воздушный фильтр;
  • Перепускной клапан – регулирует подачу отработавших газов;
  • Дроссельная заслонка – регулирует подачу воздуха на впуске;
  • Турбокомпрессор – повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес;
  • Интеркулер – охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации;
  • Датчики давления – фиксирует давление наддува в системе;
  • Впускной коллектор – распределяет воздух по цилиндрам;
  • Соединительные патрубки – необходимы для крепления элементов системы между собой.

Реактивные, турбореактивные двигатели, их виды и принцип работы

  • 1
  • 2
  • 3
  • 4
  • 5

( 36 Votes )

При всей своей мощи и кажущейся невероятной сложности – ракетные и турбореактивные двигатели на самом деле имеют довольно простой принцип работы.

Самым простым является ракетный двигатель. Начнем с него.

Турбореактивный двигатель (ТРД)

Турбореактивный двигатель (ТРД) работает по тому же принципу, что и ракетный, за исключением того, что в нем сжигается атмосферный кислород.

Сходства:Топливо постоянно сжигается внутри камеры сгорания турбины. Освобождающийся через сопло газ создает реактивную силу.

Различия:На выходе из сопла установлены несколко ступеней турбины, закрепленные на общем валу. проходя через лопатки турбин газ приводит их во вращение. Между колесами турбин установлены неподвижные направляющие лопатки, которые придаю определенное направление потоку газа на пути ко следующей ступени (колесу) турбины, что создает более эффективое вращение.

Вместе с турбиной на едином валу в передней части двигателя установлен компрессор, который служит для сжатия и подачи воздуха в камеру сгорания.

Турбовинтовой двигатель (ТВД).

Принцип работы точно такой же как и у ТРД, за исключением того, что на валу перед компрессором установлен редуктор, приводящий во вращение воздушный винт с более низкими оборотами, чем турбина.Получение мощности, необходимой для вращения ротора компрессора и воздушного винта, обеспечивается турбиной с увеличенным числом ступеней, поэтому расширение газа в турбине происходит почти полностью и реактивная тяга, получаемая за счет реакции газовой струи, вытекающей из двигателя, составляет только 10–15% суммарной тяги, в то время как воздушный винт создает основное тяговое усилие (85–90%).

ТВД сочетают в себе преимущества ТРД на больших скоростях полета (способность создавать большую тягу при относительно небольшой массе и габаритах двигателя) и ПД на малых скоростях (низкие расходы топлива) и, обладая высокой топливной эффективностью, широко применяются в силовых установках имеющих большую грузоподъемность и дальность полета самолетов (летающих на скоростях 600–800 км/ч) и вертолетов.

Турбовентиляторный двигатель (ТВлД)

Этот двигатель является неким копромиссом между турбореактивным и турбовинтовым двигателем. У турбовентиляторного двигателя (ТВлД) на валу перед компрессором установлен вентилятор, имеющий большее количество лопаток, чем воздушный винт и обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлете.

Новости СМИ2

kaz-news.ru | ekhut.ru | omsk-media.ru | samara-press.ru |

Все о транспорте газа

3. ПРОЦЕСС РАСШИРЕНИЯ ГАЗА В ТУРБИНЕ

В главе рассматриваются следующие вопросы: — назначение газовой турбины в ТРД; — схема и принцип действия осевой газовой турбины; — окружное усилие, эффективная работа газа, кпд и мощность турбины; — основные параметры, определяющие мощность тур­бины; — совместная работа турбины и компрессора в ТРД; — многоступенчатые турбины и особенности работы тур­бин двухвальных двигателей; — выходные устройства ВРД.

3.1. НАЗНАЧЕНИЕ ГАЗОВОЙ ТУРБИНЫ В ТРД

Газ, обладающий значительной потенциальной энергией, из камеры сгорания поступает я турбину. Газовая турбина представляет собой лопаточную маши­ну, преобразующую энергию сжатого и нагретого в камерах сгорания газа в механическую работу на валу. В ТРД турбина служит для вращения ротора компрессо­ра и всех обслуживающих агрегатов: топливных, масляных, гидравлических насосов и др. В сравнении с другими двигателями, преобразующими энергию газа в механическую работу, газовая турбина имеет ряд преимуществ: — возможность получения больших мощностей в одном агрегате при малых габаритах и весе; — высокий кпд, что обусловлено хорошей аэродинамикой проточной части и отсутствием крутых поворотов потока; — простота и надежность конструкции. Турбины классифицируют по направлению движения по­тока газа, по числу ступеней и другим признакам. По направлению движения потока газа турбины могут бытьрадиальными, когда поток движется от центра к пери­ферии вдоль радиуса элементов турбин, и осевыми, у которых поток движется вдоль оси турбины. В ТРД применяются осевые турбины. —По числу ступеней турбины ТРД выполняются одно, двух или много ступенчатыми в зависимости от величины степени расширения газа в турбине. Классификация турбин по другим признакам рассматри­вается в следующем параграфе.

3.2. СХЕМА И ПРИНЦИП ДЕЙСТВИЯ СТУПЕНИ ОСЕВОЙ ГАЗОВОЙ ТУРБИНЫ

Основными элементами ступени турбины являются сопло­вой аппарат (СА) и рабочее колесо (РК) рис. 26. Лопатки СА и РК образуют систему каналов проточной части турбины, по которым протекает поток газа. Для рассмотрения принципа действия ступени турбины рассечем ее цилиндрической поверхностью а— а и развернем ее на плоскость. Получим плоскостную турбинную решетку, состоящую из сечения СА и РК (рис. 27). В поперечном сечении лопатки СА и РК представляют со­бой аэродинамические профили. Газ из камеры сгорания с абсолютной скоростью потока С3, давлением Р3 и температурой Т3 поступает в каналы соп­лового аппарата. Сопловой аппарат предназначен для преоб­разования потенциальной энергии давления газового потока в кинетическую энергию. С этой целью каналы СА выполне­ны сужающимися по потоку (f3΄< f3, где f — площадь сечения канала).

Рис. 26

Рис. 27

Скорость потока в СА увеличивается от С3 до С3′, а давление и температура газа падают (Р3′<�Р3 и Т3′<�Т3). С абсолютной скоростью С3′ газ поступает на лопатки ра­бочего колеса, вращающегося с окружной скоростью U. В межлопаточном канале РК газ движется с относительной ско­ростью W3′, равной на входе в РК геометрической разности абсолютной С3′ и окружной скорости U, т.е. W3′ = C3′ – U. План скоростей на входе в РК показан на рис. 27. Для обеспечения безударного входа передние кромки ло­паток РК устанавливаются по направлению относительной скорости W3′. В связи с увеличением окружной скорости от основания лопатки к концу и необходимостью обеспечения безударного входа на всех радиусах, лопатка РК подвер­гается «крутке». В рабочем колесе кинетическая энергия газового потока преобразуется в механическую работу. Абсолютная скорость потока уменьшается в каналах РК от С3′ до С4. В зависимости от типа турбины газ в межлопаточных ка­налах РК либо продолжает расширяться (давление падает от Р3′ до Р4), либо только изменяет направление движения, а давление остается неизменным. Турбина, в которой происходит расширение газа в межлопаточных каналах РК, называется реактивной. Турбина, в которой осуществляется только поворот потока в РК, назы­вается активной. В реактивной турбине межлопаточные каналы выполнены сужающимися (f43″). В связи с этим относительная ско­рость газа в каналах РК такой турбины растет от величины Wз’ до W4. План скоростей на выходе из РК и эпюры изме­нения абсолютной С, относительнойW скоростей, давления P и температуры газов Т в сечениях турбины показаны на рис. 27. В ТРД применяются только реактивные турбины. Актив­ные турбины используются в турбодетандерах, турбонасосах. Механическая работа на валу турбины получается за счет того, что на лопатках РК, находящихся под действием газодинамических сил, создаются окружные усилия, т. е. си­лы, совпадающие с направлением скорости. Эти силы созда­ют крутящий момент на валу турбины. В реактивной турбине окружное усилие на лопатках РК возникает по двум причинам:

а) активного импульса газа, связанного с возникновением на лопатке, находящейся в потоке, аэродинамической силы Ра (рис. 28);

Рис. 28

б) за счет реактивной силы Рр , возникающей при разго­не газовой струи от скорости W3′ до W4 > W3′. Силы Ра и Рр можно разложить на осевую и окружную составляющие. Результирующая осевых составляющих активной Рао и реактивной Рро сил, равная ΔРо = Рао — Рро , восприни­мается подшипниками ротора двигателя. Результирующая же окружных составляющих активной Раи и реактивной Рри сил создает окружное усилие Рu = Раu + Рpu, используемое для получения крутящего момента и полезной мощности на валу турбины.

3.3. ОКРУЖНОЕ УСИЛИЕ, ЭФФЕКТИВНАЯ РАБОТА ГАЗА, КПД И МОЩНОСТЬ ТУРБИНЫ

а). Определение величины окружного усилия Рu. Величину силы Рu можно получить на основании изве­стной теоремы технической механики: «Изменение количест­ва движения секундной массы газа в направлении вращения рабочего колеса (окружном направлении) равно секундно­му импульсу силы, действующей в этом же направлении». Для составления уравнения количества движения постро­им совмещенный план скоростей ступени турбины (рис. 29).

Рис. 29

Из совмещенного плана скоростей видно, что W3’u = С3’u — u W4 u = u — С4 u Δ С u = С3’u — С4 u При составлении уравнения изменения количества движения положительным направлением считаем направление враще­ния (направление окружной скорости u). Окончательно окружное усилие равно Рu = [кг]; б). Эффективная работа газа. Работа окружного усилия 1 кГ газа Lu равна гдеGг — секундный расход газа [кГ/сек]. Подставиввеличину окружного усилия, полу­чим формулу работы окружного усилия Работа 1 кГ газа, переданная на вал турбины, называет­ся эффективной работой газа Lэ — Эта работа меньше работы окружного усилия на величину потерь: трение газа, перетекание газа в зазорах, трение в подшипниках, вихреобразование. Перечисленные потери невелики и составляют у мощ­ных турбин 2—3 % от общей мощности. Поэтому с достаточ­ной для практических целей точностью считают, что Lэ Lu. Тогда эффективная работа газа равна Таким образом, эффективная работа газа тем больше, чем больше закрутка газа в рабочем колесе и окружная ско­рость или обороты ротора турбины,

в). К п д турбины.

На пути преобразования адиабатической работы расши­рения газа в турбине в механическую работу на ее валу име­ются потери. Величина потерь учитывается эффективным кпд турбины, который равен отношению эффективной рабо­ты Lэ к адиабатической работе расширения газа в турбине L ад расш т.е. Эффективный кпд турбины ηT учитывает как внутренние (гидравлические) потери, так и потери энергии с выходной скоростью . Потеря с выходной скоростью является относительной, так как кинетическая энергия , недоисполь­зованная для создания мощности на валу турбины, в после­дующем используется для создания реактивной тяги двига­теля. У современных одноступенчатых газовых турбин ТРД ве­личина кпд равна ηT = 0,7 — 0,86. г). Мощность, развиваемая турбиной. Мощность турбины — это работа, совершаемая газом в течение одной секунды и переданная на вал турбины. Из определений мощность турбины равна; NT = Мощность турбины определяется вели­чинами секундного весового расхода газа Gг, температуры газа перед турбиной Т3*, степенью расширения газа в турби­не πT и кпд турбины ηT . Мощность турбины тем больше, чем больше величина указанных параметров. В современных ТРД мощность, развиваемая турбиной, достигает больших значений NT=10000—50000 л. с. и более. Эта мощность расходуется в основном на вращение ком­прессора двигателя и только 2—3 % на привод обслуживаю­щих агрегатов.

3.4. ОСНОВНЫЕ ПАРАМЕТРЫ, ОПРЕДЕЛЯЮЩИЕ МОЩНОСТЬ ТУРБИНЫ

Основными параметрами, определяющими мощность тур­бины являются: — секундный весовой расход газа Gг; — обороты ротора турбины n; — температура газа перед турбиной Тз*; — степень реактивности турбины ρ.

а). Секундный весовой расход газа Gг. Величину секундного расхода газа можно определить из уравнения неразрывности учитывая, что в сопловом ап­парате обычно устанавливается критический перепад дав­лений или близкий к нему. Это означает, что в узком (критическом) сечении СА (fкр) устанавливается критическая скорость Скр, рав­ная местной скорости звука а. Уравнение для этого слу­чая запишется в виде: где γкр —удельный вес газа в критическом сечении СА [кГ/м3]. Известно, что , а Так как давление и температура газа в критическом сечении СА Ркр и Ткр пропорциональны давлению Рз и темпе­ратуре газа Тз на входе в турбину, то можно написать: или

. Таким образом, при постоянной температуре газа перед турбиной Тз расход газа Gг определяется величиной давления газа Рз перед нею. Увеличение давления газа Рз ведет к увеличению расхода газа и мощности турбины;

б). Обороты ротора турбины n.

При постоянной температуре газа перед турбиной Тз* = Соnst, увеличение оборотов ротора турбины n ведет к увеличению мощности турбины NT. Это объясняется следующим. Увеличение оборотов рото­ра турбины n (ротора двигателя) ведет к увеличению рас­хода воздуха Gв и степени повышения давления воздуха в компрессоре двигателя πК. Увеличение πК приводит к увеличению давления на выходе из компрессора Р2* и на входе а турбину Р3*= σКСР2*. Увеличение давления Рз*, с одной стороны, увеличивает расход газа через турбину Gг, с другой стороны увеличивается степень расширения газа в турбине πТ. Таким образом, при увеличении оборотов ротора турбины мощ­ность турбины N т растет из-за увеличения расхода газа Gг и степени расширения газа в турбине πТ . Известно, что при Тз*=Const мощность турбины NT, про­порциональна числу оборотов турбины n в степени2,5, т. е. NT = f (n2,5)

в). Температура газа перед турбиной Тз* При заданных и постоянных оборотах ротора турбины n= Const увеличение температуры газов перед турбиной Тз* ведет к увеличению мощности турбины NT , так как при этом адиабатическая работа расширения газа в турбине Lадрасш увеличивается, в первой степени, а расход газа через турбину Gг уменьшается в степени 1/2.

Величина температуры газа перед турбиной ограничи­вается прочностью лопаток турбины. В современных двигате­лях она равна Тз* = 1100—1300°К.

г). Степень реактивности турбины ρ.

Степень реактивности турбины характеризует распреде­ление работы расширения газа между сопловым аппаратом и рабочим колесом турбины. Степенью реактивности турбины называется отношение адиабатической работы расширения газа в рабочем колесе Lадрк к адиабатической работе расширения газа в ступени турбины Lадрасш. . Величина степени реактивности турбины может изме­няться от 0 до 1, т. е. 0< ρ <1. Приρ = 0 расширение газа происходит только в сопло­вом аппарате, турбина чисто активная, а при р = 1 турбина чисто реактивная. Величина степени реактивности турбины влияет на кпд турбины, а следовательно, и ее мощность. Зависимость ηT =f(ρ) показана на рис. 30. Характер зависимости таков, что имеется оптимальная величина ρ ≈ 0,5, при кото­рой кпд турбины принимает максимальное значение. Объяс­няется это следующим. Степень расширения газа в турбине πТ = Р3*/Р4 можно рассматривать как произведение степеней расширения газа в СА πСА =Р3*/Рз’ на степень расширения газа в РК πРК = Р’3 / Р4, т.е. πТ = πСА · πРК . При заданной сте­пени расширения газа в турбине πT увеличение степени ре­активности ρ означает увеличение расширения газа в РК, т. е. увеличение πРК. Это возможно за счет увеличения дав­ления газа перед РК Рз’. Увеличение Рз’ сопровождается

Рис. 30

уменьшением абсолютной С’3 и относительной Wз’ скоростей перед РК. Уменьшение скорости Wз’ приводит к уменьшению гидравлических (внутренних) потерь, а следовательно, к уве­личению кпд турбины ηт. С другой стороны, увеличение расширения газа в РК с увеличением степени реактивности турбины ρведет к увеличению потерь с выходной скоростью (увеличивается кинетическая энергия ), что при­водит к уменьшению кпд турбины ηт.

3.5. СОВМЕСТНАЯ РАБОТА ТУРБИНЫ И КОМПРЕССОРА В ТРД

Так как в системе ТРД компрессор и турбина соединены общим валом, то их работа взаимозависима. Взаимозависи­мость их работы, кроме механической связи, обусловлена общим расходом воздуха через компрессор и газа через турби­ну, определяющих их мощности. Мощность, развиваемая турбиной Nт, является распола­гаемой мощностью. Она может быть равна, больше или мень­ше потребной мощности для вращения компрессора NК; В зависимости от этого различают следующие режимы совместной работы турбины и компрессора: 1. Равновесный режим, когда Nт = NК; 2. Режим разгона (увеличения оборотов двигателя), ког­да NТ > NК; 3. Режим торможения уменьшения оборотов двигателя), когда Nт < NК . Очевидно, что изменить режим работы двигателя (управ­лять двигателем) можно путем изменения мощности турби­ны. Наиболее удобным параметром, с помощью которого мож­но изменять мощность турбины является температура газа перед турбиной Тз*. Изменение Тз* достигается изменением количества топлива Gт, подаваемого в камеру сгорания двигателя. Ранее было показано, что мощность, потребная для вра­щения компрессора NК пропорциональна числу оборотов двигателя n в третьей степени, т. е. NК = f (n3), а мощность, развиваемая турбиной Nт, при заданной и по­стоянной температуре газов перед ней Тз*=Const, пропорциональна числу оборотов n в степени 2,5, т. е. NT= f (n2,5). Совмещенные графики зависимостей NК = f (n) и NT= f (n) показаны на рис. 31. Из графика видно, что при увеличении числа оборотов двигателя мощность компрессора NК растет быстрее, чем мощность турбины Nт.

Рис. 31

Мощность турбины пропорциональна температуре газов Тз*. Кривая 1 на графике показывает зависимость NT= f (n) при Тз*max =Соnst, а кривые 2, 3, 4… при меньших, но по­стоянных температурах Тз*. В точках пересечения кривых 1, 2, 3, 4… с кривой NК = f (n) мощности компрессора и турбины равны, т.е. NT = NК. Эти точки определяют равновес­ные режимы. Минимальные nmin и максимальные nmax обо­роты двигателя достигаются при Т3*=Т3*max. Обороты мень­шие nmin или большие nmax могут быть получены только путем повышения температуры выше предельно-допустимой Т3*max, что может привести к выходу из строя турбины. При увеличении оборотов от nmin до nmax температура газа перед турбиной Т3* сначала уменьшается от Т3*max до Т3*min на средних оборотах (рис. 31), а затем снова увели­чивается до Т3*max при n = nmax. Такой характер изменения температуры Т3* объясняется условиями совместной работы компрессора и турбины в системе ТРД и обусловлен разным законом изменения NК и NT по числу оборотов. Высокое значение Тз* на nmax и nmin свидетельствует о большой теплонапряженности двигателя на этих режимах. Поэтому работа двигателя на максимальных оборотах nmaxдопускается ограниченное время (5—10 мин), а обороты ма­лого газа nмг обычно на 1000—1500 об/мин превышают nmin т. е. nмг = (1000—1500) об/мин + nmin . При запуске двигателя на участке оборотов, где NT < NК раскрутка ротора турбокомпрессора производится с по­мощью пусковых двигателей (электростартеров, турбодетандеров и др.). Сначала в раскрутке ротора принимает участие только пусковой двигатель, затем в работу вступает турбина и раскрутка ротора до оборотов nмг продолжается совмест­но пусковым двигателем и турбиной. На оборотах nмг или несколько меньших, но больших nmin пусковой двигатель автоматически отключается. Время непрерывной работы на nмг также ограничивает­ся, так как Т3* относительно велика, а эффективность охлаж­дения деталей турбины на этом режиме недостаточна. Для увеличения оборотов двигателя выше nмг необхо­димо увеличить мощность турбины, что достигается увеличе­нием подачи топлива в камеру сгорания. При этом возрастает температура газа Тз*, появляется избыток мощности турбины Nт и происходит раскрутка ротора двигателя до оборотов, на которых NT = NК (кривые а и б на рис. 31). Уменьшение оборотов ротора до­стигается уменьшением пода­чи топлива в камеру сгорания, уменьшением Тз* и Nт. Обо­роты падают до величины, на которой снова NT = NК (кри­вая в на рис. 31).

3.6. МНОГОСТУПЕНЧАТЫЕ ТУРБИНЫ И ОСОБЕННО­СТИ РАБОТЫ ТУРБИН ДВУХВАЛЬНЫХ ДВИГАТЕЛЕЙ 1. Многоступенчатые турбины

Возможности одноступенчатой турбины ограничиваются максимальным (критическим) перепадом давления в сопло­вом аппарате, когда на выходе из него (критическое сече­ние косого среза) скорость потока достигает скорости звука. Этот перепад давлений (он равен примерно 2) обеспечивает получение адиабатической работы расширения газа Lад расш ≤ 25000—30000 кг·м/кГ при температурегаза навходе в турбину 850 — 9б0 °C и окружной скорости на среднем радиусе, равной U =350—370м/сек. Когда в турбине нужно сработать больший перепад дав­лений с целью получения большей величины мощности, применяют двух или многоступенчатые турбины. Многоступенчатая турбина в сравнении с одноступенча­той имеет следующие преимущества: а) меньшие потери энергии газа в проточной части, что обусловлено меньшими скоростями потока по причине мень­ших перепадов давлений в каждой ступени; б) использование эффекта возврата тепла. Вследствие трения газа выделяется тепло, которое в одноступенчатой турбине является потерей, а в многоступенчатой частично ис­пользуется в последующей ступени; в) лучшее использование выходной скорости газаиз пре­дыдущих в последующих ступенях, что снижает потери с вы­ходной скоростью и повышает кпд турбины. Недостатками многоступенчатых турбин являются: а) Конструктивная сложность; б) Увеличение длины и веса (правда, в диаметре много­ступенчатая турбина меньше одноступенчатой); в) Высокий температурный режим лопаток первой ступе­ни и хуже условия охлаждения лопаток второй и последую­щих ступеней. В современных ТРД широкое распространение получили двух и трехступенчатые турбины.

2. Особенности работы турбин двухвальных двигателей

Турбина двухвального двигателя двухступенчатая, но между ступенями имеется только газодинамическая связь. Рабочее колесо турбины первой ступени приводит во враще­ние ротор компрессора высокого давления (РВД), а рабочее колесо второй ступени ротор компрессора низкого давления (РНД). Схема роторов высокого и низкого давления пока­заны на рис. 32. Первая ступень турбины (РВД) и вторая ступень турби­ны (РНД) выполнены так, чтобы на расчетном и близком от него режимах в сопловых аппаратах устанавливались кри­тические (или близкие к нему) перепады давлений. Распре­деление работы расширения газа между ступенями при из­менении режимов работы двигателя происходит автоматиче­ски.Это обусловлено следующими основными причинами.

Рис. 32

а). При изменении оборотов двигателя степени расшире­ния газа на ступенях турбины в некотором диапазоне режи­мов, когда перепад давления в выходном сопле двигателя близок к критическому, остаются практически постоянными, т. е. πТРВД и πТРНД = Соnst, а следовательно, πTΣ = πТРВД · πТРНД = Const; б). При постоянстве степени расширения газа в турбине остается неизменным и кпд турбины, т. е. ηТРВД и ηТРНД = Соnst; в). Так как эффективная работа турбины LЭТ = , то Lэтрнд и Lэтрвд пропорциональнытолько температуре газа перед ступенью турбины Тз*рнд и Тз*рвд соответствен­но. При изменении режима работы двигателя происходит пропорциональное изменение Тз*рнд и Тз* рвд . Поэтому распределение располагаемой эффективной работы между ступенями остается неизменным, т. е. LЭТРНД / LЭТ РВД = Const . Известно, что дросселирование двигателя при­водит к увеличению потребной работы для вращения комп­рессора низкого давления (ступени «затяжеляются») и уменьшению потребной работы для вращения компрессора высокого давления (ступени «облегчаются»). При неизмен­ном распределении располагаемой работы между ступенями турбины это ведет к более интенсивному снижению оборотов РНД, чем РВД; г). При значительном дросселировании двигателя, когда на выходе устанавливается докритический перепад давления, происходит снижение общей степени расширения газа в турбине πTΣ , главным образом, за счет падения πТРНД и LЭТРНД, а πТРВД почти не меняется. Это приводит к еще более интенсивному падению оборотов РНД в сравнении с РВД, что способствует обеспечению устойчивой работы двухкаскадного компрессора.

оглавление

  1. Сжатие воздуха в компрессорах ТРД.
стр. 2
1.1. Требования, предъявляемые к компрессорам ТРД и типы компрессоров. 2
1.2. Сжатие воздуха в центробежных компрессорах. 2
1.3. Неустойчивая работа центробежного компрессора и меры борьбы с ней. 7
1.4. Сжатие воздуха в осевых компрессорах. 8
1.5. Неустойчивая работа осевого компрессора и борьба с ней. 15
2. Организация процесса горения в камерах сгорания ТРД. 19
2.1 Назначение камер сгорания. 20
2.2 Основные требования к камерам сгорания и оценка их выполнения. 20
2.3. Типы камер сгорания и их устройство. 23
2.4. Принцип действия и рабочий процесс камеры сгорания. 24
2.5. Зависимость полноты и устойчивости сгорания от условий эксплуатации. 25
3. Процесс расширения газа в турбине. 26
3.1. Назначение газовой турбины ТРД. 26
3.2 Схема и принцип действия ступени осевой газовой турбины. 26
3.3.Окружное усилие, эффективная работа газа, КПД и мощность турбины. 28
3.4. Основные параметры, определяющие мощность турбины 30
3.5 Совместная работа турбины и компрессора в ТРД. 32
3.6. Многоступенчатые турбины и особенности работы турбин двухвальных двигателей. 34

Методическое пособие составил мастер п/о Заболотный В.А.

Прежде чем прочитайте: FAQ

Применение

Нашел себе применение турбовальный двигатель и на земле. Правильнее даже говорить, что именно на земле он изначально и использовался, и только после появления авиации, как таковой, «переселился» на небо. Его можно встретить и на транспорте, и на различных магистральных станциях, где он обычно используется, как альтернатива дизельного двигателя. В сравнении с дизелем ТВД более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера.

В промышленности и народном хозяйства

ТВаД успешно используется в качестве нагнетателя природного газа на газоперекачивающих станциях. Его нередко можно увидеть на крупных газовых магистралях. Одна из последних разработок газовая турбина T16, мощностью 16 МВт. Короткое видео с применением турбовального двигателя в электроэнергетики.

Основные показатели:

  • 16,5 МВт — мощность на валу.
  • 37% — КПД, механический привод.
  • 36% — КПД, электрический (простой цикл).
  • 80% — КПД, комбинированное производство электроэнергии и тепла
  • 200 000 часов — полный жизненный цикл
  • выбросы NOx — не более 25 ppm.

Турбовальные двигатели используются в мобильных электростанциях для привода генератора. Электростанции с данным двигателем занимают меньший объем, аналогичной электростанции с традиционными двигателями.

В транспортной сфере

Несмотря на то, что в большинстве случаев турбовальные двигатели описываются, как силовые установки вертолетов, их применение не ограничено только ими. Частенько ТВаД играет роль не основного движителя, а вспомогательной установки. Такими установками обычно оснащаются самолеты, а используются они для питания энергией основных систем судна при его наземном обслуживании. То есть, когда самолет находится на земле, не обязательно запускать его основные моторы для получения электричества или создания давления в гидросистемах, для этого достаточно запуска такой небольшой установки. Также ТВаД используется в качестве пускового агрегата, который проворачивает ротор турбины при запуске. В этом случае он имеет название турбостартер.

Вид железнодорожного транспорта, на который устанавливается ТВаД, носит название газотурбовоз. Принцип его работы заключается в том, что турбовальный двигатель вращает вал генератора, вырабатывающего электрический ток. Ток поступает на электромоторы, которые, по сути, и являются основной силовой установкой. История газотурбовозов началась в 60-е годы, когда были сконструированы первые опытные образцы, правда, потом они уступили место более известным сейчас электровозам. Вместе с тем с 2007 года возобновились работы по созданию газотурбовозов, и даже был создан пробный экземпляр, работающий на сжиженном газе. Его испытания прошли успешно, так что в скором будущем, возможно, он будет выпускаться серийно.

Не обошли стороной ТВаД и создатели военной наземной техники. Некоторые танки, в том числе и отечественный Т-80 и американский М1 Abrams, оснащены ТВаД. Короткое видео разработки, внедрения и применения турбовального двигателя на танке.

Турбовальные двигатели также используются и на водном транспорте, называемом газотурбоходами. К ним относятся суда на воздушной подушке или на подводных крыльях. Наиболее известным отечественным газотурбоходом является военное судно «Зубр» — наиболее крупный десантный корабль на воздушной подушке. Этот гигант известен далеко за пределами России и является мировым рекордсменом среди суден на воздушной подушке по своим габаритам. А вот с отечественными пассажирскими газотурбоходами как-то не сложилось. Судно «Циклон», сконструированное в 80-хх годах, не пережило перестройки и со временем забылось, а новые пассажирские суда, оснащенные ТВаД пока не появились.

Танк Т-80 с газотурбинным двигателем Десантное судно «Зубр»

На пути к Т-80: танковые газотурбинные двигатели

В пятидесятых годах прошлого века широкое распространение получили газотурбинные двигатели (ГТД) различных классов. Турбореактивные моторы разгоняли авиацию до сверхзвуковых скоростей, а по воде и железным дорогам двигались локомотивы и корабли с первыми моделями газотурбинных двигателей. Предпринимались попытки оснастить такими моторами и грузовики, однако эти эксперименты оказались неудачными. Подобные силовые установки, при всех своих плюсах – экономичности на номинальном режиме работы, компактности и возможности применять различные типы топлива – не были лишены недостатков. Прежде всего, это слишком большой расход топлива при разгоне или торможении, что в итоге и определило нишу, в которой ГТД нашли свое применение. Одним из итогов различных экспериментов с такой силовой установкой стал советский танк Т-80. Но достижение всемирной известности было далеко не простым делом. От начала работ по созданию танкового ГТД до начала его серийного производства прошло почти два десятка лет.
Первые проекты
Идея сделать танк с газотурбинной силовой установкой появилась еще тогда, когда никто и не думал о проекте Т-80. Еще в 1948 году конструкторское бюро турбинного производства Ленинградского Кировского завода начало работу над проектом танкового ГТД мощностью в 700 лошадиных сил. К сожалению, проект был закрыт за бесперспективностью. Дело в том, что 700-сильный двигатель, по расчетам, потреблял чрезвычайно много топлива. Расход признали слишком большим для практического использования. Чуть позже неоднократно предпринимались попытки сконструировать другие двигатели подобного класса, но они тоже не дали никакого результата.

Во второй половине пятидесятых годов ленинградские конструкторы создали еще один двигатель, который дошел до стадии сборки прототипа. Получившийся ГТД-1 не оснащался теплообменником и выдавал мощность до тысячи лошадиных сил при расходе топлива в 350-355 г/л.с. ч. Вскоре на основе этого двигателя сделали две модификации: ГТД1-Гв6 со стационарным теплообменником и ГТД1-Гв7 с вращающимся. К сожалению, несмотря на некоторый прогресс, все три модели ГТД имели расход топлива выше расчетного. Улучшить этот параметр не представлялось возможным, поэтому проекты закрыли.

Танковый газотурбинный двигатель ГТД-1

В целом, все ранние проекты ГТД для сухопутной, в том числе и гусеничной, техники не отличались особыми успехами. Все они не смогли добраться до серийного производства. В то же время, в ходе разработки и испытаний новых моторов удалось найти немало новых оригинальных технических решений, а также собрать нужную информацию. К этому времени сформировались две основные тенденции: попытки приспособить авиационный двигатель для использования на танке и сделать специальный ГТД.

В начале шестидесятых годов произошло несколько событий, которые позитивно сказались на всем направлении. Сначала Научно-исследовательский институт двигателей (НИИД) предложил несколько вариантов моторно-трансмиссионного отделения для танка Т-55. Предлагались два варианта газотурбинного двигателя, отличавшиеся друг от друга мощностью и потреблением топлива. В апреле 1961 года вышло соответствующее распоряжение руководства страны, согласно которому НИИД должен был продолжить работы по начатым проектам, а на Челябинском тракторном заводе создавалось специальное конструкторское бюро, занятое исключительно тематикой ГТД.

Челябинские двигатели

Новое бюро получило индекс ОКБ-6 и объединило усилия с Институтом двигателей. Результатом проектирования стал проект ГТД-700. При мощности до 700 л.с. этот двигатель потреблял 280 г/л.с.ч, что приближалось к требуемым значениям. Столь высокие для своего времени характеристики были обусловлены рядом оригинальных решений. Прежде всего необходимо отметить конструкцию теплообменника, каналы которого были оптимизированы в плане сечения и скорости течения газов. Кроме того, на работе двигателя благотворно сказался новый одноступенчатый воздухоочиститель циклонного типа, задерживавший до 97% пыли. В 1965 году начались испытания двух первых образцов ГТД-700. Работа двигателей на стенде показала все преимущества примененных решений, а также позволила вовремя определить и исправить имеющиеся проблемы. Вскоре собрали еще три двигателя ГТД-700, один из которых позже был установлен на опытный танк «Объект 775Т». В марте 1968 года прошел первый запуск газотурбинного двигателя на танке и через несколько дней начались ходовые испытания. До апреля следующего года экспериментальный танк прошел около 900 километров при наработке двигателя порядка 100 часов.

Танковый газотурбинный двигатель ГТД-700

Несмотря на имеющиеся успехи, в 1969 году испытания двигателя ГТД-700 завершились. В это время прекратились работы над ракетным танком «Объект 775» и, как следствие, его газотурбинной модификацией. Однако развитие двигателя не остановилось. По результатам испытаний сотрудники НИИД провели несколько исследований и пришли к позитивным выводам. Как оказалось, конструкция ГТД-700 позволяла довести мощность до уровня порядка 1000 л.с., а расход топлива снизить до 210-220 г/л.с.ч. Перспективная модификация двигателя получила обозначение ГТД-700М. Ее расчетные характеристики выглядели многообещающе, что привело к дальнейшим разработкам. ВНИИТрансмаш (переименованный ВНИИ-100) и конструкторское бюро ЛКЗ предприняли попытку установить ГТД-700М на танки «Объект 432» и «Объект 287». Однако никаких практических результатов добиться не удалось. Моторно-трансмиссионное отделение первого танка оказалось недостаточно большим для размещения всех агрегатов силовой установки, а второй проект вскоре был закрыт за бесперспективностью. На этом история двигателя ГТД-700 закончилась.

ГТД-3 для «Объекта 432»

Одновременно с НИИД и челябинскими конструкторами над своими проектами ГТД работали в омском ОКБ-29 (сейчас Омское моторостроительное конструкторское бюро) и ленинградском ОКБ-117 (завод им. В.Я. Климова). Стоит отметить, основным направлением работы этих предприятий была адаптация авиационных двигателей к танковым «нуждам». Этим фактом обусловлен целый ряд особенностей получившихся двигателей. Одним из первых переработке подвергся вертолетный турбовальный двигатель ГТД-3, разработанный в Омске. После адаптации для использования на танке он получил новый индекс ГТД-3Т и немного потерял в мощности, с 750 до 700 л.с. Расход топлива в танковом варианте составлял 330-350 г/л.с.ч. Такое потребление горючего было слишком велико для практического использования двигателя, но ГТД-3Т все же был установлен на ходовой макет, базой для которого послужил танк Т-54. Позже подобный эксперимент провели с танком Т-55 (проект ВНИИ-100) и с «Объектом 166ТМ» (проект Уралвагонзавода). Примечательно, что после испытаний своего опытного образца тагильские конструкторы пришли к выводу о нецелесообразности продолжения работ по газотурбинной тематике и вернулись к созданию танков с дизельными двигателями.

В 1965 году ОКБ-29 и ВНИИ-100 получили задание доработать двигатель ГТД-3Т для использования на танке «Объект 432», который вскоре был принят на вооружение под обозначением Т-64. В ходе такой доработки двигатель получил новое обозначение ГТД-3ТЛ и ряд изменений в конструкции. Изменились конструкция компрессора и корпуса турбины, появилась система перепуска газов после компрессора, созданы два новых редуктора (один в составе моторного агрегата, другой располагался на корпусе танка), а также переделана выхлопная труба. Имея сравнительно небольшие габариты, двигатель ГТД-3ТЛ хорошо вписался в моторно-трансмиссионное отделение «Объекта 432», а в свободных объемах уместились дополнительные баки на 200 литров топлива. Стоит отметить, в МТО танка пришлось ставить не только новый двигатель, но и новую трансмиссию, приспособленную для работы с газотурбинным двигателем. Крутящий момент двигателя передавался на главный редуктор и распределялся на две бортовые планетарные коробки передач. В конструкции новой трансмиссии широко использовались детали исходной системы «Объекта 432». Ввиду специфических требований двигателя к подаче воздуха пришлось заново спроектировать оборудование для подводного вождения, имеющее в своем составе воздухопитающие и выхлопные трубы большего диаметра.

В ходе проектирования двигателя ГТД-3ТЛ, с целью проверки некоторых идей, на танке Т-55 установили мотор ГТД-3Т. Танк с газотурбинным двигателем сравнили с аналогичной бронемашиной, оборудованной стандартным дизелем В-55. В результате этих испытаний подтвердились все предварительные расчеты. Так, средняя скорость опытного танка оказалась немного выше скорости серийного, но за это преимущество пришлось платить в 2,5-2,7 раза более высоким расходом топлива. При этом к моменту сравнительных испытаний не были достигнуты требуемые характеристики. Вместо необходимых 700 л.с. ГТД-3ТЛ выдавал лишь 600-610 и сжигал порядка 340 г/л.с.ч вместо требовавшихся 300. Повышенный расход топлива привел к серьезному уменьшению запаса хода. Наконец, ресурс в 200 часов не дотягивал даже до половины от заданных 500. Выявленные недостатки были учтены и вскоре появился полноценный проект ГТД-3ТЛ. К концу 1965 года ОКБ-29 и ВНИИ-100 совместными усилиями завершили разработку нового двигателя. За основу для него был взят не танковый ГТД-3Т, а авиационный ГТД-3Ф. Новый двигатель развивал мощность до 800 л.с. и потреблял не более 300 г/л.с.ч. В 1965-66 годах изготовили два новых двигателя и проверили их на танке «Объект 003», представлявшем собой доработанный «Объект 432».

Одновременно с испытаниями танка «Объект 003» шла разработка «Объекта 004» и силовой установки для него. Предполагалось использовать двигатель ГТД-3ТП, имевший большую мощность в сравнении с ГТД-3ТЛ. Кроме того, мотор с индексом «ТП» должен был размещаться не поперек корпуса танка, а вдоль, что повлекло за собой перекомпоновку некоторых агрегатов. Основные пути развития остались прежними, но их нюансы подверглись определенным коррективам, связанным с выявленными проблемами газотурбинных двигателей. Пришлось серьезно доработать систему забора и фильтрации воздуха, а также отвода выхлопных газов. Еще один серьезный вопрос касался эффективного охлаждения двигателя. Создание новой трансмиссии, повышение характеристик и доведение моторесурса до требуемых 500 часов также остались актуальными. При проектировании двигателя и трансмиссии для танка «Объект 004» старались скомпоновать все агрегаты таким образом, чтобы они могли уместиться в МТО с минимальными его доработками.

Наибольшим изменениям подверглась крыша моторно-трансмиссионного отделения и кормовой лист бронекорпуса. Крышу сделали из сравнительно тонкого и легкого листа с окнами, на которых разместили жалюзи воздухозаборного устройства. В корме появились отверстия для выброса газов двигателя и воздуха из системы охлаждения. Для повышения живучести эти отверстия прикрыли бронированным колпаком. Двигатели и некоторые агрегаты трансмиссии укрепили на заново разработанной раме, которая монтировалась на бронекорпусе без доработок последнего. Сам двигатель установили продольно, с небольшим сдвигом от оси танка влево. Рядом с ним разместились топливный и масляный насосы, 24 прямоточных циклона системы воздухоочистки, компрессор, стартер-генератор и т.п.

Двигатель ГТД-3ТП мог выдавать мощность до 950 л.с. при расходе топлива в 260-270 г/л.с.ч. Характерной чертой этого двигателя стала его схема. В отличие от предыдущих моторов семейства ГТД-3 он был сделан по двухвальной системе. С двигателем была сопряжена четырехскоростная трансмиссия, разработанная с учетом характерных для газотурбинного двигателя нагрузок. Согласно расчетам, трансмиссия могла работать в течение всего срока службы двигателя – до 500 часов. Бортовые коробки передач имели тот же размер, что и на исходном «Объекте 432» и помещались на исходных местах. Приводы управления агрегатами двигателя и трансмиссии в большинстве своем располагались на старых местах.

Насколько известно, «Объект 004» так и остался на чертежах. В ходе его разработки удалось решить несколько важных вопросов, а также определить планы на будущее. Несмотря на уменьшение заметности танка с ГТД в инфракрасном спектре, улучшившееся качество очистки воздуха, создание специальной трансмиссии и т.п., расход топлива оставался на недопустимом уровне.

ГТД из Ленинграда

Еще одним проектом, начавшимся в 1961 году, были ленинградские исследования перспектив турбовального двигателя ГТД-350. Ленинградские Кировский завод и Завод им. Климова совместными усилиями начали изучать поставленный перед ними вопрос. В качестве стенда самых для первых исследований применялся серийный трактор К-700. На него установили двигатель ГТД-350, для работы с которым пришлось немного доработать трансмиссию. Вскоре начался еще один эксперимент. На этот раз «платформой» для газотурбинного двигателя стал бронетранспортер БТР-50П. Подробности этих испытаний не стали достоянием общественности, но известно, что по их результатам двигатель ГТД-350 признали пригодным для использования на сухопутной технике.

На его базе создали два варианта двигателя ГТД-350Т, с теплообменником и без. Без теплообменника газотурбинный двигатель двухвальной системы со свободной турбиной развивал мощность до 400 л.с. и имел расход топлива на уровне 350 г/л.с.ч. Вариант с теплообменником был ощутимо экономичнее – не более 300 г/л.с.ч., хотя и проигрывал в максимальной мощности порядка 5-10 л.с. На основе двух вариантов двигателя ГТД-350Т были сделаны силовые агрегаты для танка. При этом, ввиду сравнительно малой мощности, рассматривались варианты с применением как одного двигателя, так и двух. В результате сравнений наиболее перспективным был признан агрегат с двумя двигателями ГТД-350Т, располагавшимися вдоль корпуса танка. В 1963 году началась сборка опытного образца такой силовой установки. Его установили на шасси экспериментального ракетного танка «Объект 287». Получившуюся машину назвали «Объектом 288».

В 1966-67 годах этот танк прошел заводские испытания, где подтвердил и скорректировал расчетные характеристики. Однако главным результатом поездок по полигону стало понимание того, что перспективы спаренной системы двигателей сомнительны. Силовая установка с двумя двигателями и оригинальным редуктором получилась сложнее в производстве и эксплуатации, а также дороже, чем один ГТД эквивалентной мощности с обычной трансмиссией. Предпринимались некоторые попытки развить двухдвигательную схему, но в итоге конструкторы ЛКЗ и Завода им. Климова остановили работы в этом направлении.

Стоит отметить, проекты ГТД-350Т и «Объект 288» были закрыты только в 1968 году. До этого времени, по настоянию заказчика в лице Минобороны, состоялись сравнительные испытания сразу нескольких танков. В них участвовали дизельные Т-64 и «Объект 287», а также газотурбинные «Объект 288» и «Объект 003». Испытания были суровыми и проходили на разных местностях и в разных погодных условиях. В результате выяснилось, что при имеющихся преимуществах в части габаритов или максимальной мощности существующие газотурбинные двигатели менее пригодны для практического применения, чем освоенные в производстве дизели.

Незадолго до прекращения работ по тематике спаренных двигателей конструкторы ЛКЗ и Завода им. Климова сделали два эскизных проекта, подразумевавших установку на танк «Объект 432» спаренной установки с перспективными двигателями ГТД-Т мощностью по 450 л.с. Рассматривались различные варианты размещения двигателей, но в итоге оба проекта не получили продолжения. Спаренные силовые установки оказались неудобными для практического применения и более не использовались.

Двигатель для Т-64А

Принятый на вооружение в шестидесятых годах танк Т-64А при всех своих преимуществах не был лишен недостатков. Высокая степень новизны и несколько оригинальных идей стали причиной технических и эксплуатационных проблем. Немало нареканий вызвал двигатель 5ТДФ. В частности, и из-за них было решено всерьез заняться перспективным ГТД для этого танка. В 1967 году появилось соответствующее постановление руководства страны. К этому времени уже имелся определенный опыт в сфере оснащения танка «Объект 432» газотурбинной силовой установкой, поэтому конструкторам не пришлось начинать с нуля. Весной 1968-го года на ленинградском Заводе им. Климова развернулись проектные работы по двигателю ГТД-1000Т.

Главным вопросом, стоявшим перед конструкторами, было снижение расхода топлива. Остальные нюансы проекта уже были отработаны и не нуждались в столь большом внимании. Улучшать экономичность предложили несколькими путями: повысить температуру газов, улучшить охлаждение элементов конструкции, модернизировать теплообменник, а также повысить КПД всех механизмов. Кроме того, при создании ГТД-1000Т применили оригинальный подход: координацией действий нескольких предприятий, занятых в проекте, должна была заниматься сводная группа из 20 их сотрудников, представлявших каждую организацию.

Благодаря такому подходу достаточно быстро удалось определиться с конкретным обликом перспективного двигателя. Таким образом, в планы входило создание трехвального ГТД с двухкаскадным турбокомпрессором, кольцевой камерой сгорания и охлаждаемым сопловым аппаратом. Силовая турбина – одноступенчатая с регулируемым сопловым аппаратом перед ней. В конструкцию двигателя ГТД-1000Т сразу ввели встроенный понижающий редуктор, который мог преобразовывать вращение силовой турбины со скоростью порядка 25-26 тыс. оборотов в минуту в 3-3,2 тыс. Выходной вал редуктора разместили таким образом, что он мог передавать крутящий момент на бортовые коробки передач «Объекта 432» без лишних деталей трансмиссии.

По предложению сотрудников ВНИИТрансмаш, для очистки поступающего воздуха применили блок прямоточных циклонов. Выведение выделенной из воздуха пыли было обязанностью дополнительных центробежных вентиляторов, которые, кроме того, обдували масляные радиаторы. Использование такой простой и эффективной системы очистки воздуха привело к отказу от теплообменника. В случае его использования для достижения требуемых характеристик требовалось очищать воздух почти на все 100%, что было, как минимум, очень сложно. Двигатель ГТД-1000Т без теплообменника мог работать даже если в воздухе оставалось до 3% пыли.

Отдельно стоит отметить компоновку двигателя. На корпусе собственно газотурбинного агрегата установили циклоны, радиаторы, насосы, маслобак, компрессор, генератор и прочие части силовой установки. Получившийся моноблок имел габариты, пригодные для установки в моторно-трансмиссионное отделение танка Т-64А. Кроме того, в сравнении с оригинальной силовой установкой, двигатель ГТД-1000Т оставлял внутри бронированного корпуса объем, достаточный для размещения баков на 200 литров топлива.

Весной 1969 года началась сборка опытных экземпляров Т-64А с газотурбинной силовой установкой. Интересно, что в создании прототипов участвовали сразу несколько предприятий: Ленинградский Кировский и Ижорский заводы, Завод им. Климова, а также Харьковский завод транспортного машиностроения. Чуть позже руководство оборонной промышленности решило построить опытную партию из 20 танков Т-64А с газотурбинной силовой установкой и распределить их по различным испытаниям. 7-8 танков предназначались для заводских, 2-3 для полигонных, а оставшиеся машины должны были пройти войсковые испытания в разных условиях.

За несколько месяцев испытаний в условиях полигонов и испытательных баз было собрано нужное количество информации. Двигатели ГТД-1000Т показали все свои преимущества, а также доказали пригодность для использования на практике. Однако выяснилась другая проблема. При мощности в 1000 л.с. двигатель не слишком удачно взаимодействовал с имеющейся ходовой частью. Ее ресурс заметно снижался. Более того, к моменту окончания испытаний почти все двадцать опытных танков нуждались в ремонте ходовой или трансмиссии.

На финишной прямой

Самым очевидным решением проблемы выглядела доработка ходовой части танка Т-64А для использования вместе с ГТД-1000Т. Однако такой процесс мог занять слишком много времени и с инициативой выступили конструкторы ЛКЗ. По их мнению, нужно было не модернизировать имеющуюся технику, а создавать новую, изначально рассчитанную под большие нагрузки. Так появился проект «Объект 219».

Как известно, за несколько лет разработки этот проект успел претерпеть массу изменений. Корректировались почти все элементы конструкции. Точно так же доработкам подвергся и двигатель ГТД-1000Т и сопряженные с ним системы. Пожалуй, самым главным вопросом в это время было повышение степени очистки воздуха. В результате массы исследований выбрали воздухоочиститель с 28 циклонами, оснащенными вентиляторами с особой формой лопасти. Для уменьшения износа некоторые детали циклонов покрыли полиуретаном. Изменение воздухоочистительной системы сократило поступление пыли в двигатель примерно на один процент.

Еще во время испытаний в Средней Азии проявилась другая проблема газотурбинного двигателя. В тамошних грунтах и песках было повышенное содержание кремнезема. Такая пыль, попав в двигатель, спекалась на его агрегатах в виде стекловидной корки. Она мешала нормальному течению газов в тракте двигателя, а также увеличивала его износ. Эту проблему пытались решить при помощи специальных химических покрытий, впрыска в двигатель особого раствора, создания вокруг деталей воздушной прослойки и даже применения неких материалов, постепенно разрушавшихся и уносивших с собой пригоревшую пыль. Однако ни один из предложенных методов не помог. В 1973 году эту проблему решили. Группа специалистов Завода им. Климова предложила установить на наиболее подверженную загрязнению часть двигателя – сопловой аппарат – специальный пневмовибратор. При необходимости или через определенный промежуток времени в этот агрегат подавался воздух от компрессора и сопловой аппарат начинал вибрировать с частотой в 400 Гц. Налипшие частички пыли буквально стряхивались и выдувались выхлопными газами. Чуть позже вибратор заменили восемью пневмоударниками более простой конструкции.

В результате всех доработок наконец удалось довести ресурс двигателя ГТД-1000Т до требуемых 500 часов. Расход топлива танков «Объект 219» был примерно в 1,5-1,8 раза больше, чем у бронемашин с дизельными двигателями. Соответствующим образом сократился и запас хода. Тем не менее, по совокупности технических и боевых характеристик танк «Объект 219сп2» признали пригодным для принятия на вооружение. В 1976 году вышло постановление Совмина, в котором танк получил обозначение Т-80. В дальнейшем эта бронемашина претерпела ряд изменений, на ее базе было создано несколько модификаций, в том числе и с новыми двигателями. Но это уже совсем другая история.

По материалам сайтов: журнал ««Техника и вооружение: вчера, сегодня, завтра…»» https://armor.kiev.ua/ https://army-guide.com/ https://t80leningrad.narod.ru/

Плюсы и минусы двигателя

Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.

Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.

Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.

Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.

Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД турбинных двигателей, например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.

Среди главных преимуществ агрегата можно также выделить:

  • Низкое содержание вредоносных веществ в выхлопных газах;
  • Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
  • Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
  • Низкий уровень шума во время работы;
  • Хорошая характеристика кривой крутящего момента;
  • Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
  • Повышенная удельная мощность.

Турбореактивный двигатель с форсажной камерой

Рис. 2. Схема ТРДФ. 1 – турбокомпрессор; 2 – блок форсажной камеры; 3 – сопло; 4 – форсажная камера; 5 – стабилизаторы пламени.
Турбореактивный двигатель с форсажной камерой (ТРДФ) (рис. 2) широко применяется на скоростных боевых самолётах.

Как и в ТРД, основу внутреннего контура ТРДФ составляет турбокомпрессор (газогенератор), включающий в себя компрессор, камеру сгорания и турбину. Между турбокомпрессором и соплом (обычно регулируемым, т. е. с изменяемой площадью потока) установлена форсажная камера, в которой сжигается дополнительное горючее (керосин), подаваемое через форсунки форсажной камеры. Стабилизаторы пламени обеспечивают устойчивое горение обеднённой кислородом топливной смеси (часть кислорода воздуха использована при горении керосина в камере сгорания турбокомпрессора). За счёт сжигания дополнительного топлива происходит увеличение тяги (форсирование, форсаж – франц. forçage, от forcer – вынуждать, чрезмерно напрягать) на 50% и более, что связано, однако, с резким повышением расхода топлива. Поэтому режим форсажа используется кратковременно на взлёте для сокращения длины разбега и в воздушном бою для увеличения скороподъёмности и скорости полёта. Использование форсажных режимов на крейсерском полёте экономически невыгодно.

Основными характеристиками двигателя любого типа являются: масса двигателя $m_{дв}$ и его габариты; стартовая тяга двигателя $P_{дв0}$; удельная масса двигателя $g_{дв} = m_{дв}/P_{дв0}$ (кг/Н); удельный расход двигателя $C_р$, показывающий расход массы топлива на создание 1Н тяги в час, [кг/(Н×ч)]; высотно-скоростные характеристики $P = f(H, V)$ и $C_р = f(H,V)$; ресурс двигателя.

Качественный характер высотно-скоростных характеристик ГТД включает тяговые и высотные характеристики, которые определяются главным образом степенью повышения давления в компрессоре, степенью двухконтурности и температурой газа перед турбиной.

Потребная для определённых условий полёта тяга (мощность) обеспечивается выбором соответствующего режима работы силовой установки. Лётчик управляет режимом работы двигателя с помощью рычага управления двигателем (РУД), перемещение которого регулирует, т. е. увеличивает или уменьшает – дросселирует (от нем. drosseln – душить, сокращать), расход топлива.

Большинство современных пассажирских самолётов оборудуются вспомогательной силовой установкой (ВСУ) – небольшим ГТД, вся мощность которого используется не для создания тяги, а для снабжения энергией бортовых систем самолёта. При стоянке на земле ВСУ обеспечивает работу электросистем, радиооборудования, системы кондиционирования самолёта, техническое обслуживание самолёта и его систем, запуск основных двигателей, что делает самолёт независимым от аэродромных источников энергии. ВСУ может применяться и как источник энергии в аварийных ситуациях в полёте.

Разновидность ТРД – турбовентиляторный двигатель.

Двигатель самолёта является основным источником шума в кабине и на местности. Для удовлетворения требований по уровню допустимого шума в конструкции самолёта используют материалы и устройства, изолирующие источник шума или поглощающие шум. Звукоизоляционные прокладочные материалы ограждают источник шума и ослабляют звук при его проникновении через ограждение (см. в статье ).

Изобретение относится к авиадвигателестроению.

Основным трендом для ТРДД является повышение их экономичности. Достигается это за счет увеличения эффективного и полетного к.п.д. ТРДД. Эффективный к.п.д. ТРДД можно повысить двумя способами: за счет изменения вида термодинамического цикла ТРДД, и за счет изменения его параметров. Полетный к.п.д. ТРДД можно повысить за счет повышения степени двухконтурности ТРДД, величина которой, в конечном счете, определяется тем же термодинамическим циклом ТРДД (чем больше работа цикла, тем больше степень двухконтурности).

Целью изобретения является повышение экономичности ТРДД.

Известны двухконтурные турбореактивные двигатели с раздельными контурами со степенями двухконтурности более десяти (например, Trent 1000, НК-93 и др.), состоящие из входного устройства, вентилятора; внутреннего контура, внутри которого расположены: компрессор (компрессоры), камера сгорания, турбины, сопло; внешнего контура, состоящего из кольцевого канала и сопла (Теория и расчет воздушно-реактивных двигателей / Под ред. С.М. Шляхтенко. — М.: Машиностроение, 1987, с. 17, рис. 1.3).

Известны турбовинтовые газотурбинные двигатели с регенерацией тепла (там же, с. 354, рис. 11.3).

Известны турбовальные газотурбинные двигатели, у которых за свободной турбиной устанавливается не сопло, а диффузорный выходной патрубок (Нечаев Ю.Н., Федоров P.M. Теория авиационных газотурбинных двигателей. Ч. 2. — М.: Машиностроение, 1978, с. 268, рис. 19.2).

Поставленная цель достигается тем, что в ТРДД с раздельными контурами со степенью двухконтурности более десяти снабжен диффузорным выходным патрубком, являющимся продолжением внутреннего контура (вместо сопла) и состоящим из расширяющихся каналов, расположенных внутри внешнего контура, сообщенных с атмосферой.

Сущность изобретения заключается в том, что выходной патрубок позволяет: а) увеличить степень понижения давления в турбине привода вентилятора; б) изменить вид термодинамического цикла ТРДД; в) осуществить регенерацию теплоты во внешнем контуре.

На фиг. 1 показан ТРДД;

на фиг. 2 показан термодинамический цикл ТРДД (внутренний контур);

на фиг. 3 показан термодинамический цикл ТРДД (внешний контур).

Двухконтурный ТРД (фиг. 1) состоит из входного устройства 1, вентилятора 2, внутреннего и внешнего контуров. Во внутреннем контуре расположены: компрессоры 3, камера сгорания 4, турбины 5, выходной патрубок 6, состоящий из диффузорных каналов, которые расположены внутри внешнего контура 7 и сообщены с атмосферой. Внешний контур 7 представляет собой кольцевой канал, заканчивающийся соплом 8.

Работа двигателя не отличается от работы ТРДД с раздельными контурами, за исключением работы турбины 5 и выходного устройства (патрубок 6). В турбине 5 срабатывается перепад давлений, превышающий располагаемый перепад давлений (отношение давления газа перед турбиной к атмосферному). В результате скорость газа за турбиной увеличивается, а статическое давление становится меньше атмосферного. В диффузорных каналах 6 газ тормозится до скорости, при которой его статическое давление становится равным атмосферному, после чего газ истекает в атмосферу.

Каналы 6 обдуваются воздухом внешнего контура, температура которого меньше температуры выхлопных газов. Между горячим газом и воздухом устанавливается тепловой поток, в результате которого температура выхлопных газов понижается, а температура воздуха повышается. Понижение температуры выхлопных газов снижает затраты энергии на их сжатие при торможении в каналах 6, а так же уменьшает потери с выхлопом. Повышение температуры воздуха увеличивает скорость истечения воздуха из сопла 8, которая, как известно, пропорциональна корню квадратному из указанной температуры.

На фиг. 2 показан термодинамический цикл ТРДД (внутренний контур) в Р-υ координатах. Здесь н-в — сжатие воздуха во входном устройстве и вентиляторе; в-к — сжатие воздуха в компрессорах; к-г — процесс в камере сгорания; г-тк — расширение газа в турбинах привода компрессоров; тк-т — расширение газа в турбине привода вентилятора; т-с — сжатие газа в каналах выходного патрубка. Сжатие газа происходит с отводом тепла во внешний контур ТРДД (температура газа приближается к температуре воздуха наружного контура Тв* — точка с). Работа цикла внутреннего контура Lц1 (площадь н-к-г-т-с-н) увеличивается на величину затененной области.

На фиг. 3 показан термодинамический цикл ТРДД (внешний контур) в Р-υ координатах. Здесь н-в — сжатие воздуха во входном устройстве и вентиляторе; в-с’ — расширение газа в сопле внешнего контура. Расширение воздуха происходит с подводом тепла из внутреннего контура ТРДД, что ведет к появлению работы цикла внешнего контура Lц2 (затененная область), которая в прототипе отсутствует.

Работа цикла ТРДД определяется как Lц=Lц1+m⋅Lц2, где m — степень двухконтурности ТРДД.

Таким образом, работа цикла ТРДД увеличивается по трем взаимосвязанным причинам:

увеличивается работа цикла внутреннего контура Lц1 (фиг. 2, затененная область), как результат увеличения перепада давлений в турбине привода вентилятора вследствие использования выходного патрубка;

увеличивается степень двухконтурности m, как результат совместной работы вентилятора и выходного патрубка;

увеличивается работа цикла внешнего контура Lц2 (фиг. 3), как результат совместной работы вентилятора и выходного патрубка.

Увеличение работы цикла внутреннего контура Lц1 при неизменной степени повышения давления воздуха в вентиляторе повышает расход воздуха через внешний контур, т.е. степень двухконтурности m. Повышение степени двухконтурности m улучшает теплообмен между газом внутреннего контура (выходным патрубком) и воздухом внешнего контура, что повышает работу цикла внешнего контура Lц2.

По отношению к прототипу (ТРДД с раздельными контурами) работа цикла Lц при тех же параметрах цикла увеличивается, а следовательно, увеличивается эффективный к.п.д. ТРДД, так как подвод энергии (процесс к-г) тот же.

Повышение степени двухконтурности т, как следствие совместной работы вентилятора и выходного патрубка (см. выше), повышает полетный к.п.д. ТРДД.

Соответственно, общий к.п.д. ТРДД, который определяется как произведение эффективного и полетного к.п.д., повышается (по предварительной оценке на 3÷5%).

Таким образом, предложена новая газодинамическая схема ТРДД с отличительными признаками, указанными в формуле изобретения, в которой влияние отличительных признаков (совместная работа вентилятора и выходного патрубка) на конечный результат (повышение общего к.п.д. ТРДД), ранее не было известно.

Двухконтурный турбореактивный двигатель предназначен для использования в гражданской и военно-транспортной авиации.
Двухконтурный турбореактивный двигатель с раздельными контурами со степенью двухконтурности более десяти, состоящий из входного устройства, вентилятора; внутреннего контура, внутри которого расположены компрессор (компрессоры), камера сгорания, турбины; внешнего контура, состоящего из кольцевого канала и сопла, отличающийся тем, что двигатель снабжен диффузорным выходным патрубком, являющимся продолжением внутреннего контура и состоящим из расширяющихся каналов, расположенных внутри внешнего контура и сообщенных с атмосферой.

Двухконтурный турбореактивный двигатель

Отличительные черты газотурбинных двигателей

Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом. Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.

Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

Для экономного потребления топлива газовая турбина оснащена теплообменником — диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

Преимущества и недостатки современного турбомотора

Перед тем, как мы приступим к анализу плюсов и минусов турбодвигателя, хотелось бы еще раз обратить ваше внимание на один нюанс. Как утверждают маркетологи, доля реализуемых новых автомобилей с турбонаддувом сегодня существенно увеличилась.

Более того, многочисленные источники делают акцент на том, что турбодвигатели все больше и больше теснят «атмосферники», автолюбители зачастую выбирают именно «турбо», так как считают атмосферные двигатели безнадежно устаревшим типом ДВС и т.п. Давайте разбираться, так ли хорош турбомотр на самом деле.

Плюсы турбодвигателя

  1. Начнем с явных плюсов. Действительно, турбодвигатель легче по весу, меньше по рабочему объему, но при этом выдает высокую максимальную мощность. Также моторы с турбиной обеспечивают высокий крутящий момент, который доступен на низких оборотах и является стабильным в широком диапазоне. Другими словами, турбомоторы имеют ровную полку крутящего момента, доступную с самых «низов» и до относительно высоких оборотов.
  2. В атмосферном двигателе такой ровной полки нет, так как тяга напрямую зависит от оборотов двигателя. На низки оборотах атмомотор обычно выдает меньший крутящий момент, то есть его нужно раскручивать для получения приемлемой динамики. На высоких оборотах мотор выходит на максимум мощности, но крутящий момент снижается в результате возникающих естественных потерь.
  3. Теперь несколько слов об экономичности турбодвигателей. Такие моторы и правда расходуют меньше топлива по сравнению с атмосферными агрегатами в определенных условиях. Дело в том, что процесс наполнения цилиндров воздухом и топливом полностью контролируется электроникой.
    Получается, ЭБУ следит за тем, чтобы соотношение компонентов смеси было оптимальным на любых режимах работы турбированного ДВС, благодаря чему достигается полноценное сгорание заряда и происходит отдача максимума полезной энергии. В случае с атмосферными двигателями наполнение зависит как от оборотов коленвала, так и от температуры наружного воздуха, атмосферного давления и ряда других факторов.
  4. Если учесть небольшой вес самого агрегата с турбиной, доступную тягу на низких оборотах и отсутствие зависимости от внешних факторов, турбомотор закономерно расходует в штатных режимах эксплуатации меньше топлива. При этом следует помнить, что данное преимущество полностью исчезает в том случае, если постоянно ездить в режиме «газ в пол». Тогда расход топлива на турбодвигателе может оказаться даже большим, чем у атмосферных аналогов.

Минусы турбированного ДВС

Итак, с основными плюсами разобрались. Что касается минусов, они также присутствуют. Вполне очевидно, что турбомотор сложнее как в плане электроники и исполнительных устройств, так и в плане реализации самой схемы турбонаддува. Повышенные требования к качеству топлива и моторного масла тоже никуда не делись.

Дело в том, что небольшой по размерам и объему агрегат работает в условиях высоких механических и тепловых нагрузок. Давление наддува и температура в цилиндрах намного выше по сравнению с атмосферными двигателями, что означает ускоренный износ турбомотора.

Производители учитывают разные нюансы, закладывая больший запас прочности в агрегат, но во время ремонта турбодвигателя стоимость усиленных деталей получается ощутимо выше. Также двигатель с турбиной имеет большое количество датчиков и магистралей, а также дополнительных систем, что усложняет диагностику в случае возникновения неисправностей.

  1. Очень важным моментом является ресурс самой турбины. Турбонагнетатель повсеместно устанавливается на современные ДВС, окончательно вытеснив механический компрессор. При этом турбина на бензиновом двигателе обычно «ходит» всего около 150 тыс. км, на дизеле этот показатель в среднем составляет до 250 тыс. км. Затем турбокомпрессор нуждается в дорогом ремонте или полной замене.
  2. Что касается известной проблемы в виде «турбоямы» или «турболага», на современных двигателях этот недостаток практически устранен посредством установки турбин с изменяемой геометрией, путем использования технологий «би-турбо» и т.д. Почему практически, а не до конца? Дело в том, что идеальной остроты отклика во время дозирования тяги в процессе дросселирования, которая свойственна атмосферным моторам, все равно нет. Параллельно с этим более сложные системы турбонаддува требуют повышенных затрат, создают определенные затруднения, которые связаны с обслуживанием и ремонтом.

Устройство и принцип работы агрегата

По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

Помимо этого мотор состоит из таких составляющих как — редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.

В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

Как работает турбина дизельного двигателя

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

Как работает турбина дизельного двигателя

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Как работает турбина дизельного двигателя 01

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Устройство и принцип работы двигателя

Строение турбовального двигателя в общих чертах напоминает строение ТРД. Основными составляющими являются комрессор, турбина, камера сгорания и вал. В отличие от других газотурбинных двигателей ТВаД совсем не имеет реактивной тяги – вся свободная энергия расходуется на вращение вала, поэтому и сопла, как такового, у него нет, а есть только каналы (своеобразные выхлопные трубы), по которым отводятся отработанные газы. Еще одна особенность ТВаД – наличие не одной, а двух турбин, не связанных между собой механически. Одна турбина приводит в движение компрессор, а вторая – рабочий вал. Между собой они связаны газодинамически. Некоторые модели турбовинтовых двигателей также имеют схожую конструкцию, но не обязательно. В случае с ТВаД турбин всегда две.

Две основные схемы устройства ТВаД с описание расположенных механизмов. Картинки кликабельны.

Принцип работы турбовального двигателя тоже не сильно отличается от ТРД или ТВД. Компрессор, приводимый в движение турбиной, нагнетает воздух в камеру сгорания, где он перемешивается с впрыснутым через форсунки топливом. Топливный заряд воспламеняется и сгорает, в результате чего образуются газы с большим запасом энергии. Расширяясь, они вращают турбины, приводя в движение компрессор и вал, а отработанные газы выводятся наружу.

Компрессор турбовального двигателя имеет несколько ступеней и может быть центробежным, осевым или комбинированным. Комбинированные компрессоры сочетают в себе и центробежные, и осевые ступени.

Обязательным конструктивным элементом ТВаД, как, впрочем, и турбовинтового двигателя, является редуктор, установленный между турбиной и валом. Сама турбина вращается с угловой скоростью, достигающей 20 000 об/мин. Понятно, что винт, закрепленный на валу и создающий тягу, не сможет работать при такой скорости и выполнять свои функции, ведь тогда ему придется вращаться со сверхзвуковой скоростью. Редуктор, установленный перед валом, понижает обороты и увеличивает крутящий момент, так что скорость вращения лопастей винта вертолета значительно меньше скорости вращения турбины.

Если турбовинтовые двигатели, которые используются на самолетах, должны иметь компактные размеры, а вал турбины и вал винта у них устанавливаются параллельно в одном корпусе, то к габаритам турбовальных двигателей таких жестких требований нет. Рабочий вал у них может находиться впереди турбины или за ней, в одном корпусе с ней или отдельно. Это объясняется тем, что мотор спрятан в конструкции кабины, где его можно расположить в любом удобном положении. Различают цельные моторы и модульные, состоящие из отдельных модулей, связанных между собой механически. Часто в одном модуле расположены компрессор и турбины, а в другом – рабочий вал, связанный с валом турбины редуктором.

Легкий американский вертолет AH-6j Little Bird

Реактивный двигатель своими руками

Вы знали, что если в согнутую дугой трубу положить сухого спирта, подуть воздухом из компрессора и подать газ из баллона, то она взбесится, будет орать громче взлетающего истребителя и краснеть от злости? Это образное, но весьма близкое к истине описание работы бесклапанного пульсирующего воздушно-реактивного двигателя — настоящего реактивного двигателя, построить который под силу каждому.

Сергей Апресов Дмитрий Горячкин

12 мая 2013 10:00

Бесклапанный ПуВРД — удивительная конструкция. В ней нет движущихся частей, компрессора, турбины, клапанов. Простейший ПуВРД может обойтись даже без системы зажигания. Этот двигатель способен работать практически на чем угодно: замените баллон с пропаном канистрой с бензином — и он продолжит пульсировать и создавать тягу. К сожалению, ПуВРД оказались несостоятельными в авиации, но в последнее время их всерьез рассматривают как источник тепла при производстве биотоплива. И в этом случае двигатель работает на графитовой пыли, то есть на твердом топливе.

Наконец, элементарный принцип работы пульсирующего двигателя делает его относительно безразличным к точности изготовления. Поэтому изготовление ПуВРД стало излюбленным занятием для людей, неравнодушных к техническим хобби, в том числе авиамоделистов и начинающих сварщиков.

Реактивный двигатель своими руками

Несмотря на всю простоту, ПуВРД — это все-таки реактивный двигатель. Собрать его в домашней мастерской весьма непросто, и в этом процессе немало нюансов и подводных камней. Поэтому мы решили сделать наш мастер-класс многосерийным: в этой статье мы поговорим о принципах работы ПуВРД и расскажем, как изготовить корпус двигателя. Материал в следующем номере будет посвящен системе зажигания и процедуре запуска. Наконец, в одном из последующих номеров мы обязательно установим наш мотор на самодвижущееся шасси, чтобы продемонстрировать, что он действительно способен создавать серьезную тягу.

От русской идеи до немецкой ракеты

Собирать пульсирующий реактивный двигатель особенно приятно, зная, что впервые принцип действия ПуВРД запатентовал российский изобретатель Николай Телешов еще в 1864 году. Авторство первого действующего двигателя также приписывается россиянину — Владимиру Караводину. Высшей точкой развития ПуВРД по праву считается знаменитая крылатая ракета «Фау-1», состоявшая на вооружении армии Германии во время Второй мировой войны.

Реактивный двигатель своими руками

Конечно же, речь идет о клапанных пульсирующих двигателях, принцип действия которых понятен из рисунка. Клапан на входе в камеру сгорания беспрепятственно пропускает в нее воздух. В камеру подается топливо, образуется горючая смесь. Когда свеча зажигания поджигает смесь, избыточное давление в камере сгорания закрывает клапан. Расширяющиеся газы направляются в сопло, создавая реактивную тягу. Движение продуктов сгорания создает в камере технический вакуум, благодаря которому клапан открывается, и в камеру всасывается воздух.

В отличие от турбореактивного двигателя, в ПуВРД смесь горит не непрерывно, а в импульсном режиме. Именно этим объясняется характерный низкочастотный шум пульсирующих моторов, который делает их неприменимыми в гражданской авиации. С точки зрения экономичности ПуВРД также проигрывают ТРД: несмотря на впечатляющее отношение тяги к массе (ведь у ПуВРД минимум деталей), степень сжатия в них достигает от силы 1,2:1, поэтому топливо сгорает неэффективно.

Реактивный двигатель своими руками

Зато ПуВРД бесценны как хобби: ведь они могут обходиться вообще без клапанов. Принципиально конструкция такого двигателя представляет собой камеру сгорания с подсоединенными к ней входной и выходной трубами. Входная труба гораздо короче выходной. Клапаном в таком двигателе служит не что иное, как фронт химических превращений.

Горючая смесь в ПуВРД сгорает с дозвуковой скоростью. Такое горение называется дефлаграцией (в отличие от сверхзвукового — детонации). При воспламенении смеси горючие газы вырываются из обеих труб. Именно поэтому и входная, и выходная трубы направлены в одну сторону и сообща участвуют в создании реактивной тяги. Но за счет разницы длин в тот момент, когда давление во входной трубе падает, по выходной еще движутся выхлопные газы. Они создают разрежение в камере сгорания, и через входную трубу в нее затягивается воздух. Часть газов из выходной трубы также направляется в камеру сгорания под действием разрежения. Они сжимают новую порцию горючей смеси и поджигают ее.

Реактивный двигатель своими руками

Бесклапанный пульсирующий двигатель неприхотлив и стабилен. Для поддержания работы ему не требуется система зажигания. За счет разрежения он всасывает атмосферный воздух, не требуя дополнительного наддува. Если строить мотор на жидком топливе (мы для простоты предпочли газ пропан), то входная труба исправно выполняет функции карбюратора, распыляя в камеру сгорания смесь бензина и воздуха. Единственный момент, когда необходима система зажигания и принудительный наддув, — это запуск.

Китайский дизайн, российская сборка

Существует несколько распространенных конструкций пульсирующих реактивных двигателей. Кроме классической «U-образной трубы», весьма сложной в изготовлении, часто встречается «китайский двигатель» с конической камерой сгорания, к которой под углом приваривается небольшая входная труба, и «русский двигатель», по конструкции напоминающий автомобильный глушитель.

Реактивный двигатель своими руками

Прежде чем экспериментировать с собственными конструкциями ПуВРД, настоятельно рекомендуется построить двигатель по готовым чертежам: ведь сечения и объемы камеры сгорания, входной и выходной труб всецело определяют частоту резонансных пульсаций. Если не соблюдать пропорции, двигатель может не запуститься. Разнообразные чертежи ПуВРД доступны в интернете. Мы выбрали модель под названием «Гигантский китайский двигатель», размеры которой приводим во врезке.

Любительские ПуВРД делаются из листового металла. Применять в строительстве готовые трубы допустимо, но не рекомендуется по нескольким причинам. Во‑первых, практически невозможно подобрать трубы точно требуемого диаметра. Тем более сложно найти необходимые конические секции.

Реактивный двигатель своими руками

Во-вторых, трубы, как правило, имеют толстые стенки и соответствующий вес. Для двигателя, который должен обладать хорошим соотношением тяги к массе, это неприемлемо. Наконец, во время работы двигатель раскаляется докрасна. Если применять в конструкции трубы и фитинги из разных металлов с разным коэффициентом расширения, мотор проживет недолго.

Итак, мы выбрали путь, который выбирает большинство любителей ПуВРД, — изготовить корпус из листового металла. И тут же встали перед дилеммой: обратиться к профессионалам со специальным оборудованием (станки для водно-абразивной резки с ЧПУ, вальцы для проката труб, специальная сварка) или, вооружившись простейшими инструментами и самым распространенным сварочным аппаратом, пройти нелегкий путь начинающего двигателестроителя от начала до конца. Мы предпочли второй вариант.

Снова в школу

Первое, что необходимо сделать, — начертить развертки будущих деталей. Для этого необходимо вспомнить школьную геометрию и совсем немного вузовского черчения. Сделать развертки цилиндрических труб проще простого — это прямоугольники, одна сторона которых равна длине трубы, а вторая — диаметру, умноженному на «пи». Рассчитать развертку усеченного конуса или усеченного цилиндра — чуть более сложная задача, для решения которой нам пришлось заглянуть в учебник черчения.

Реактивный двигатель своими руками

Выбор металла — весьма деликатный вопрос. С точки зрения термостойкости для наших целей лучше всего подходит нержавейка, но для первого раза лучше использовать черную низкоуглеродистую сталь: ее проще формовать и варить. Минимальная толщина листа, способного выдержать температуру сгорания топлива, — 0,6 мм. Чем тоньше сталь, тем легче ее формовать и труднее варить. Мы выбрали лист толщиной 1 мм и, похоже, не прогадали.

Даже если ваш сварочный аппарат может работать в режиме плазменной резки, не используйте его для вырезания разверток: края обработанных таким образом деталей плохо свариваются. Ручные ножницы по металлу — тоже не лучший выбор, так как они загибают края заготовок. Идеальный инструмент — электрические ножницы, которые режут миллиметровый лист как по маслу.

Реактивный двигатель своими руками

Для сгибания листа в трубу есть специальный инструмент — вальцы, или листогиб. Он относится к профессиональному производственному оборудованию и поэтому вряд ли найдется у вас в гараже. Согнуть достойную трубу помогут тиски.

Процесс сварки миллиметрового металла полноразмерным сварочным аппаратом требует определенного опыта. Чуть передержав электрод на одном месте, легко прожечь в заготовке дыру. При сварке в шов могут попасть пузырьки воздуха, которые затем дадут течь. Поэтому имеет смысл шлифовать шов болгаркой до минимальной толщины, чтобы пузырьки не оставались внутри шва, а становились видимыми.

Примечания

  1. ↑ .
  2. ↑ Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. Авторы: В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987
  3. Александр Грек.
    Человек, который купил космодром // Популярная механика. — 2020. — № 11. — С. 54.
  4. Андрей Суворов.
    Ядерный след // Популярная механика. — 2020. — № 5. — С. 88-92.
В этой статье не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена
17 ноября 2011 года
.
Эта статья требует оформления и доводки.
В этой статье необходимо:
  1. улучшить стиль написания статьи;
  2. проработать структуру (разделы) статьи;
  3. проставить и заполнить карточки, оформить статью в целом с использованием вики-разметки;
  4. аккуратно разместить и подписать изображения;
  5. сделать ссылками ключевые слова и даты в тексте;
  6. подписать сноски и ссылки.

Если вы желаете оформить данную статью, пожалуйста, отредактируйте данный шаблон в тексте статьи, дописав в него

Двигатели
Расположениецилиндров
  • Рядный двигатель U-образный двигатель
  • Оппозитный двигатель
  • Н-образный двигатель
  • V-образный двигатель
  • VR-образный двигатель
  • W-образный двигатель
  • Звездообразный двигатель
    • вращающийся
  • X-образный двигатель
Типы поршней
  • Свободно-поршневые
  • Двигатель со встречным движением поршней дельтообразный
  • Аксиальные
Способвоспламенения
  • Дизельные
  • Компрессионные карбюраторные
  • Калильно-компрессионный
  • Калильные карбюраторные
  • Батарейное зажигание
  • Магнето
  • Дуговые и искровые свечи
Роторные
  • Двигатель Ванкеля
  • Орбитальный двигатель двигатель Сарича
  • Роторно-лопастной двигатель Вигриянова
Комбинированные
  • Гибридные
  • Двигатель Хессельмана
Воздушно-реактивные
Основные типы
Турбореактивные
  • Турбовентиляторные (двухконтурные)
  • Турбовинтовые
  • Турбовинтовентиляторные
  • Турбовальные
Модификациии гибридные системы
  • Мотокомпрессорный воздушно-реактивный двигатель
  • Гиперзвуковые прямоточные
См. также:
Газотурбинные двигатели
Ракетные двигатели
  • Выбрасывающий
  • Стартовый
  • Разгонный
  • Маршевый
  • Маневровый
Химические
Другие
  • Твердотопливные
  • Топливно-гибридные
Ядерные
  • Термоядерные
  • Газофазно-ядерные
  • Твёрдофазно-ядерные
  • Солевые
Электрические
  • Плазменные электромагнитный ускоритель VASIMR
  • Ионные
  • Электротермические
  • Электростатические
Другие
  • Клиновоздушный
  • Двигатель Бассарда
Двигатели внешнего сгорания
  • Паровая машина
  • Двигатель Стирлинга
  • Пневматический двигатель
Паровые
  • Парогазовая установка
  • Конденсационная турбина
Гидравлические турбины
  • Пропеллерная турбина
  • Гидротрансформатор
По конструктивным особенностям
  • Осевая (аксиальная) турбина
  • Центробежная турбина радиальная
  • диагональная
  • Радиально-осевая турбина (турбина Френсиса)
  • Поворотно-лопастная турбина (турбина Каплана)
  • Ковшовая турбина (турбина Пелтона)
  • Турбина Турго
  • Ротор Дарье
  • Турбина Уэльса
  • Турбина Тесла
  • Сегнерово колесо
Электродвигатели
  • Постоянного тока
  • Переменного тока
  • Многофазные
  • Трёхфазные
  • Двухфазные
  • Однофазные
  • Универсальные
Асинхронные
  • Конденсаторный двигатель
Синхронные
  • Бесколлекторные (Вентильный двигатель)
  • Коллекторные
  • Вентильные реактивные
  • Шаговые
Другие
  • Линейные
  • Гистерезисные
  • Униполярные
  • Ультразвуковые
  • Мендосинский мотор
Биологические двигатели
Моторные белки
  • Актин
  • Динеин
  • Кинезин
  • Миозин
  • Тропомиозин
  • Тропонин
  • Флагеллин
См. также Вечный двигатель Мотор-редуктор

Проблемы разработки малых ТГД

При уменьшении размера ГТД происходит уменьшение КПД и удельной мощности по сравнению с обычными турбореактивными двигателями. При этом удельная величина расхода топлива так же возрастает; ухудшаются аэродинамические характеристики проточных участков турбины и компрессора, снижается КПД этих элементов. В камере сгорания, в результате уменьшения расхода воздуха, снижается коэффициент полноты сгорания ТВС.

Снижение КПД узлов ГТД при уменьшении его габаритов приводит к уменьшению КПД всего агрегата

Поэтому, при модернизации модели, конструкторы уделяют особое внимание увеличению КПД отдельно взятых элементов, вплоть до 1%.

Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%. Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину.

Принцип работы турбинного двигателя на автомобиле

Принцип работы турбинного двигателя на автомобиле

В зависимости от устройства и принципа действия ДВС бывают:

  • атмосферными;
  • турбированными.

Разница между ними заключается в том, что в систему турбонаддува входит компрессор, интеркулер, регулятор давления наддува и пр. Основным элементом является турбокомпрессор, который отвечает за повышение давления в системе впуска воздуха. Интеркулер необходим для охлаждения воздуха и увеличения его плотности.

Система находится под управлением регулятора наддува – перепускного клапана, который контролирует давление газов. Ограничивая их количество, клапан создает оптимальное давление в системе.

Турбокомпрессор функционирует следующим образом:

  • Пройдя сквозь воздушный фильтр, воздух достигает входного отверстия.
  • Воздух сжимается, процент содержания в нем кислорода повышается; за счет нагрева воздуха уменьшается его плотность.
  • Воздушная масса выходит из турбинного компрессора, попадает в интеркулер, где охлаждается.
  • Через дроссель и впускной коллектор сжатый воздух попадает в цилиндры двигателя.
  • Часть образовавшихся при работе двигателя выхлопных газов подается турбиной обратно в коллектор турбины; за счет этого воздушного потока приводится в движение вал, на одном из концов которого находится компрессор.
  • После этого воздух начинает повторно сжиматься.

Бензиновые и дизельные турбинные двигатели на автомобилях практически идентичны, разница заключается только в уровне наддува. Для дизельных ДВС необходимо большее давление, в связи с этим они комплектуются более мощными нагнетателями воздуха. Бензиновым двигателям достаточно нагнетателей меньшей мощности, поскольку излишнее давление в камере сгорания может привести к детонации.

  1. Бензиновый турбинный двигатель на автомобиле представляет собой ДВС с искусственно увеличенным благодаря турбине уровнем сжатия воздуха в камерах. За счет повышения этого параметра увеличивается мощность мотора и ряд других характеристик. Создав самый первый силовой агрегат, инженеры начали попытки увеличения его мощности без значительного изменения объема мотора. Казалось бы, решить эту задачу очень просто, позволив ДВС более эффективно «дышать». Дополнительный объем воздуха, поступающий в цилиндры принудительно, под давлением, способен улучшить параметры сгорания топливовоздушной смеси.
    За счет большего объема воздуха топливо может прогорать полностью, тем самым повышая мощность. Однако внедрение новых технологий происходило медленно. Изначально турбокомпрессоры устанавливались только на большие двигатели кораблей и авиации.
  2. Турбодизельные агрегаты имеют практически аналогичное строение. Разница между бензиновым и дизельным турбинным двигателем на автомобиле заключается в наличии интеркулера – узла, охлаждающего воздух перед его поступлением в цилиндры. Так как холодный воздух имеет меньший объем по сравнению с теплым, он может поступить в цилиндры в большем количестве.

Виды газотурбинных двигателей

Среди основных видов, используемых при производстве легковых автомобилей, называют два типа двигателей:

  • Двухвальный с теплообменником. Такой тип можно встретить чаще всего. Использование таких двигателей улучшает динамические свойства машины и сводит к минимуму количество ступеней в коробке передач. Автомобили с реактивными двигателями такого типа при разгоне практически не требуют переключения коробки передач. Среди недостатков можно назвать увеличение массы агрегата за счет использования дополнительных деталей (воздуховода и теплообменника).

Двухвальный газотурбинный двигатель

  • Двигатель со свободно-поршневым газовым генератором. Такой тип считается самым перспективным в плане . Схема конструкции двигателя представляет собой блок, который объединяет двухтактный дизель и поршневой компрессор.

Принцип работы свободно-поршневого газотурбинного двигателя

Авиационный ГТД Климов ГТД-350 для вертолета Ми-2

Впервые разработка ГТД-350 началась еще в 1959 году в ОКБ-117 под начальством конструктора С.П. Изотова. Изначально задача состояла в разработке малого двигателя для вертолета МИ-2.

МИ-2

На этапе проектирования были применены экспериментальные установки, использован метод поузловой доводки. В процессе исследования созданы методики расчета малогабаритных лопаточных аппаратов, проводились конструктивные мероприятия по демпфированию высокооборотных роторов. Первые образцы рабочей модели двигателя появились в 1961 году. Воздушные испытания вертолета Ми-2 с ГТД-350 впервые были проведены 22 сентября 1961 года. По результатам испытаний, два вертолетных двигателя разнесли в стороны, переоснастив трансмиссию.

Государственную сертификацию двигатель прошел в 1963 году. Серийное производство открылось в польском городе Жешув в 1964 году под руководством советских специалистов и продолжалось до 1990 года.

Малый газотурбинный двигатель отечественного производства ГТД-350 имеет следующие ТТХ:

— вес: 139 кг; — габариты: 1385 х 626 х 760 мм; — номинальная мощность на валу свободной турбины: 400 л.с.(295 кВт); — частота вращения свободной турбины: 24000; — диапазон рабочих температур -60…+60 ºC; — удельный расход топлива 0,5 кг/кВт час; — топливо — керосин; — мощность крейсерская: 265 л.с; — мощность взлётная: 400 л.с.

В целях безопасности полетов на вертолет Ми-2 устанавливают 2 двигателя. Спаренная установка позволяет воздушному судну благополучно завершить полет в случае отказа одной из силовых установок.

ГТД — 350 на данный момент морально устарел, в современной малой авиации нужны более можные, надежные и дешевые газотурбинные двигатели. На современный момент новый и перспективным отечественным двигателем является МД-120, корпорации «Салют». Масса двигателя — 35кг, тяга двигателя 120кгс.

Общая схема

Конструктивная схема ГТД-350 несколько необычна за счет расположения камеры сгорания не сразу за компрессором, как в стандартных образцах, а за турбиной. При этом турбина приложена к компрессору. Такая необычная компоновка узлов сокращает длину силовых валов двигателя, следовательно, снижает вес агрегата и позволяет достичь высоких оборотов ротора и экономичности.

В процессе работы двигателя, воздух поступает через ВНА, проходит ступени осевого компрессора, центробежную ступень и достигает воздухосборной улитки. Оттуда, по двум трубам воздух подается в заднюю часть двигателя к камере сгорания, где меняет направление потока на противоположное и поступает на турбинные колеса. Основные узлы ГТД-350: компрессор, камера сгорания, турбина, газосборник и редуктор. Системы двигателя представлены: смазочной, регулировочной и противообледенительной.

Агрегат расчленен на самостоятельные узлы, что позволяет производить отдельные запчасти и обеспечивать их быстрый ремонт. Двигатель постоянно дорабатывается и на сегодняшний день его модификацией и производством занимается ОАО «Климов». Первоначальный ресурс ГТД-350 составлял всего 200 часов, но в процессе модификации был постепенно доведен до 1000 часов. На картинке представлена общая смеха механической связи всех узлов и агрегатов.

Малые ГТД области применения

Микротурбины применяют в промышленности и быту в качестве автономных источников электроэнергии. — Мощность микротурбин составляет 30-1000 кВт; — объем не превышает 4 кубических метра.

Среди преимуществ малых ГТД можно выделить: — широкий диапазон нагрузок; — низкая вибрация и уровень шума; — работа на различных видах топлива; — небольшие габариты; — низкий уровень эмиссии выхлопов.

Отрицательные моменты: — сложность электронной схемы (в стандартном варианте силовая схема выполняется с двойным энергопреобразованием); — силовая турбина с механизмом поддержания оборотов значительно повышает стоимость и усложняет производство всего агрегата.

На сегодняшний день турбогенераторы не получили такого широкого распространения в России и на постсоветском пространстве, как в странах США и Европы в виду высокой стоимости производства. Однако, по проведенным расчетам, одиночная газотурбинная автономная установка мощностью 100 кВт и КПД 30% может быть использована для энергоснабжения стандартных 80 квартир с газовыми плитами.

Коротенькое видео, использования турбовального двигателя для электрогенератора.

За счет установки абсорбционных холодильников, микротурбина может использоваться в качестве системы кондиционирования и для одновременного охлаждения значительного количества помещений.

Автомобильная промышленность

Малые ГТД продемонстрировали удовлетворительные результаты при проведении дорожных испытаний, однако стоимость автомобиля, за счет сложности элементов конструкции многократно возрастает. ГТД с мощностью 100-1200 л.с. имеют характеристики, подобные бензиновым двигателям, однако в ближайшее время не ожидается массовое производство таких авто. Для решения этих задач необходимо усовершенствовать и удешевить все составляющие части двигателя.

По иному дела обстоят в оборонной промышленности

Военные не обращают внимание на стоимость, для них важнее эксплуатационные характеристики. Военным нужна была мощная, компактная, безотказная силовая установка для танков

И в середине 60-ых годов 20 века к этой проблеме привлекли Сергея Изотова, создателя силовой установки для МИ-2 — ГТД-350. КБ Изотова начало разработку и в итоге создало ГТД-1000 для танка Т-80. Пожалуй это единственный положительный опыт использования ГТД для наземного транспорта. Недостатки использования двигателя на танке — это его прожорливость и привередливость к чистоте проходящего по рабочему тракту воздуху. Внизу представлено короткое видео работы танкового ГТД-1000.

Малая авиация

На сегодняшний день высокая стоимость и низкая надежность поршневых двигателей с мощностью 50-150 кВт не позволяют малой авиации России уверенно расправить крылья. Такие двигатели, как «Rotax» не сертифицированы на территории России, а двигатели «Lycoming», применяемые в сельскохозяйственной авиации имеют заведомо завышенную стоимость. Кроме того, они работают на бензине, который не производится в нашей стране, что дополнительно увеличивает стоимость эксплуатации.

Именно малая авиация, как ни одна другая отрасль нуждается в проектах малых ГТД. Развивая инфраструктуру производства малых турбин, можно с уверенностью говорить о возрождении сельскохозяйственной авиации. За рубежом производством малых ГТД занимается достаточное количество фирм. Сфера применения: частные самолеты и беспилотники. Среди моделей для легких самолетов можно выделить чешские двигателиTJ100A, TP100 и TP180, и американский TPR80.

В России со времен СССР малые и средние ГТД разрабатывались в основном для вертолетов и легких самолетов. Их ресурс составлял от 4 до 8 тыс. часов,

На сегодняшний день для нужд вертолета МИ-2 продолжают выпускаться малые ГТД такие как: ГТД-350, РД-33,ТВЗ-117ВМА, ТВ-2-117А, ВК-2500ПС-03 и ТВ-7-117В.

Агрегат со свободно поршневым генератором

На сегодняшний день аппараты этого типа являются наиболее перспективными для авто. Устройство движка представлено блоком, который соединяет поршневой компрессор и 2-х тактовый дизель. В середине находится цилиндр с наличием двух поршней объединенных друг с другом с помощью специального приспособления.

Работа движка начинается с того, что воздух сжимается во время схождения поршней и происходит возгорание горючего. Газы образуются за счет сгоревшей смеси, они способствуют расхождению поршней при повышенной температуре. Затем газы оказываются в газо-сборнике. За счет продувочных щелей в цилиндр попадает пережатый воздух, помогающий очистить агрегат от отработанных газов. Затем цикл начинается заново.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: