С.А.Микоян. «Воспоминания военного летчика-испытателя»

Терминология

Посмотрим на типовое крыло в плане:

Сечение крыла в плоскости симметрии называется корневым профилем

, а его хорда –
корневойb
кр. На концах крыла соответственно
концевой профиль
и
концевая хордаb
кц. Расстояние от одного концевого профиля до другого называется
размахом крылаl
. Хорда профиля крыла может быть разная вдоль его размаха. Отношение корневой хорды к концевой называется
сужением крылаn
. Отношение площади крыла к его размаху называют
средней геометрической хордойb
ср, а отношение размаха крыла к bср –
удлинением крылаL
. Если по ходу полета концы крыла отклонены относительно корневого сечения, говорят о
стреловидности крыла
. На рис.1 показана B –
стреловидность по передней кромке
– угол между перпендикуляром к плоскости симметрии и передней кромкой крыла. Правомерно также говорить о
стреловидности по задней кромке
, но важнее всего –
стреловидность по линии фокусов
, т.е. линии, соединяющей фокусы профилей крыла вдоль его размаха. Очевидно, что при нулевой стреловидности по линии фокусов у крыла с ненулевым сужением кромки не перпендикулярны плоскости симметрии крыла. Тем не менее, принято считать его прямым, а не стреловидным крылом. Если концы крыла отклонены относительно корневого сечения назад, — говорят о
положительной стреловидности
, если вперед – об
отрицательной
. Если крыло в плане образовано прямыми передней и задней кромками, то стреловидность не меняется вдоль размаха. Если же это не так, то стреловидность может изменять свое значение и даже знак.

Чтобы покончить с основными терминами, посмотрим на крыло вдоль линии полета:

У большинства крыльев его концы на таком виде находятся выше корневого сечения, и крыло напоминает по форме латинскую букву V. Такую особенность называют поперечным
V крыла
и измеряют в градусах. Если концы выше – то
положительноеV
, если ниже корневого сечения, то
отрицательноеV
крыла. Если у крыла на данном виде две или даже три точки излома, то говорят о
двойном или тройномV крыла
. У самолета

есть еще продольное V, но его рассмотрение выходит за рамки данной статьи.

Если в половине крыла хорды всех его профилей по размаху лежат в одной плоскости и профиль во всех сечениях один, — говорят о плоском крыле

. Если нет – то имеет место
геометрическая крутка крыла
. В этом случае угол атаки концевых профилей больше (
положительная крутка
) или меньше (
отрицательная крутка
), чем у корневого профиля крыла. Если вдоль размаха крыла меняется его профиль – говорят об
аэродинамической крутке
. Крутка крыла отличается от его перекоса примерно тем же, чем разведчик отличается от шпиона. Первое желательно и полезно, а второе приходит само и приносит одни неприятности.

Удлинение

Мы начинаем рассмотрение геометрических характеристик крыла с важнейшей: удлинения крыла. На заре авиации, когда еще не было аэродинамики как науки, а самолеты уже летали, наиболее талантливые конструкторы интуитивно понимали роль удлинения крыла в создании подъемной силы. Выдающиеся по грузоподъемности самолеты были созданы тогда русским конструктором Сикорским. Они имели удлинение крыла более 10 и превосходно летали. А, к примеру, известный русский конструктор Можайский, не понял значения удлинения крыла, и его самолеты не полетели. Почему так важно удлинение крыла?

В первой части статьи мы рассматривали обтекание профиля в плоскости сечения. Подъемная сила крыла создается за счет небольшого подпора давления на нижней поверхности крыла и большого разряжения на верхней. Разница давления создается динамически – набегающим потоком. Естественно, что воздух, как и всякий газ стремится выровнять давление. Но как? Верхняя и нижняя поверхности разделены твердым крылом, – здесь газу не пройти. Вокруг передней кромки крыла – мешает скоростной напор набегающего воздуха в передней части нижней поверхности крыла. Вокруг задней кромки – сдерживает линии обратного тока воздуха скоростной напор на верхней поверхности крыла. Когда его не хватает, – происходит отрыв пограничного слоя и давление начинает выравниваться, – быстро падает подъемная сила крыла. Этот случай рассмотрен в первой части статьи. Как же воздух может выравнивать давление под и над крылом?

Маленькое лирическое отступление. В родном НИИ, где автор работает всю жизнь, в среде аспирантов и соискателей распространена байка, приписываемая профессору, сказавшему однажды: «Двигать науку вперед – трудно, назад – нельзя. Значит, будем двигать ее вбок». Посмотрим, что происходит с разницей давлений на краю крыла:

Как видите, воздух с нижней поверхности, где давление избыточно, начинает свое движение вбок, и обогнув вокруг края крыла, попадает на верхнюю поверхность. Разница давления уменьшается и падает подъемная сила крыла. Поскольку крыло движется в потоке, все это происходит динамически. К моменту прихода большей части воздуха на верхнюю поверхность крыла – оно уже уходит вперед и остается закрученный в вихрь воздух. При движении крыла оно оставляет за собой вихревые жгуты по концам крыла.

В первой части статьи мы говорили о лобовом сопротивлении и двух его составляющих – профильном сопротивлении и индуктивном. В диапазоне рабочих углов атаки профильное сопротивление почти не меняет своего значения. Индуктивное же, пропорционально квадрату С y, что хорошо видно на графике:

При С y равном нулю – индуктивное сопротивление тоже равно нулю. Главный вклад в индуктивное сопротивление вносят отраженные на рисунке 3 вихревые жгуты. Весьма распространено среди моделистов еще одно заблуждение в области аэродинамики, что эти вихревые жгуты, — единственные виновники индуктивного сопротивления. Это не так. Даже крыло бесконечного размаха все равно обладает индуктивным сопротивлением, но гораздо меньшим по абсолютной величине. У крыла два конца. Интенсивность отсоса энергии в концевой вихревой жгут зависит от погонной подъемной силы крыла, определяемой разностью давлений. Отсюда очевидное решение: поскольку конца всего два, надо уменьшить погонную подъемную силу, т.е. увеличить размах крыла при той же его площади. А это и означает увеличение удлинения крыла. Приближенно можно считать, что концевой жгут сильно снижает погонную подъемную силу на расстоянии до двух хорд от конца крыла. Поэтому для крыльев удлинения 4 и меньше, краевые эффекты радикально влияют на подъемную силу и индуктивное сопротивление крыла, в наибольшей мере определяя аэродинамическое качество крыла в целом.

Как и разряжение на верхней поверхности крыла, вихревые жгуты по концам крыла можно увидеть собственными глазами на аэрошоу при показательном пилотаже сверхзвуковых самолетов. Когда самолет резко маневрирует, с концов крыльев срываются жгуты белой пелены из конденсата влаги, содержащейся в воздухе:

Итак, стало понятно, что для получения возможно большого аэродинамического качества крыла, надо увеличивать его удлинение. Это была миска меда. Сейчас добавим туда много ложек дегтя.

Первая ложка – конструктивная. При увеличении удлинения у крыла фиксированной площади уменьшается его хорда и строительная высота лонжерона. Одновременно увеличивается длина плеча приложения подъемной силы консоли крыла к корневому сечению лонжерона. Получается, что при увеличении удлинения вдвое, требования к прочности лонжерона увеличиваются вчетверо. Сразу отметим, что в большой авиации чаще всего главной причиной снижения удлинения крыла является именно прочностные возможности его лонжерона.

Вторая ложка – тоже конструктивная. Для того, чтобы по размаху крыла обеспечить одинаковый угол атаки всех профилей, необходимо иметь достаточно жесткое на кручение крыло. Чем его удлинение больше, тем труднее обеспечить требуемую жесткость. Помимо раздрая в углах атаки и связанного с ним снижения аэродинамического качества, в мягком на кручение крыле возможны резонансные явления, получившие название флаттера. Рассматривать его сейчас не будем, упомянув лишь, что из-за этого явления погибли сотни пилотов в большой авиации. Две модели самолетов автора тоже разрушались в воздухе из-за него же.

Третья ложка – аэродинамическая. Крыло повышенного удлинения снижает маневренные качества самолета по крену. Подробнее его причины рассмотрены в следующей главе о сужении крыла.

Четвертая ложка – тоже аэродинамическая. При равной площади увеличение удлинения приводит к пропорциональному снижению хорды крыла и, соответственно, числа Re его обтекания. Поэтому, увеличивая удлинение в погоне за аэродинамическим качеством, у медленно летающих моделей можно неожиданно получить при росте удлинения резкое снижение аэродинамического качества крыла. Это когда число Re попадает в область докритического обтекания. Борются с этим, как уже упоминалось в первой части статьи, размещением на крыле турбулизаторов.

Каков диапазон применяемых удлинений крыла в авиации? Он очень широк. Для сверхзвуковых маневренных самолетов крыло часто имеет удлинение меньше 1. У некоторых неманевренных, например у Конкорда и Ту-144, удлинение крыла тоже менее 1. Это специфика сверхзвука и здесь разбирать ее не будем. Пример приведен лишь для копиистов, которые должны понимать, что на модельных скоростях такие крылья обладают очень плохими несущими способностями и надо максимально снижать удельную нагрузку на крыло у копий самолетов с минимальным удлинением.

Максимальное известное автору удлинение – чуть более 50 имеет немецкий планер «Эта». В бескомпромиссной борьбе за аэродинамическое качество его конструкторы смогли сделать достаточно жесткое крыло такого фантастического удлинения. В указанном диапазоне укладываются все летающие на сегодня крылья.

О моделях. Помимо копий, малые удлинения крыльев – около 4, характерны для фан-флаев. Эти модели имеют низкую нагрузку на крыло и несущие свойства крыла для них второстепенны. Пилотажные самолеты имеют удлинения 5 – 6. Такие же удлинения характерны и для учебно-тренировочных моделей. Планеры, у которых аэродинамическое качество – важнейший параметр, имеют удлинения от 10 для пилотажных и маневренных моделей до 20 у кроссовых радиопланеров. Здесь многое определяется предназначением планера. Для классов F3Jи F3F, где важны маневренные качества, удлинение обычно не превышает 15. Интересно, что при большем удлинении планер может проиграть состязание в термических потоках в силу снижения способности оставаться в узком термическом потоке. В книге DasThermikbuchfuerModellfliger приведен пример сравнения двух планеров применительно к среднеевропейским термикам. Получается, что у планера Bocian, имеющего удлинение крыла 16, скороподъемность в потоке будет меньше, чем у планера Pionyr с удлинением 9, за счет большего радиуса виража. Имея аэродинамическое качество на 40% больше, первый планер уступит второму по скороподъемности в термике на 23%! Тоже и у моделей планеров. Во многих скоростных и гоночных спортивных видах моделей удлинение жестко задано техническими требованиями к ним и конструкторы не вольны его выбирать.

Советский F-111

Ну а что же в СССР? За редким исключением, советская военная мысль в первые годы после войны — это американская с запозданием на несколько лет. В конце 1950-х в СССР появился свой «Фантом» — истребитель Су-7, который быстро мигрировал в область истребителей-бомбардировщиков. Для истребителя он был тяжеловат (взлетный вес более 12 т), а для бомбардировщика брал мало бомб — всего 2 т. Попытка навесить на него в два раза большую нагрузку привели к почти полной утрате летных свойств. Выход был один — крыло с изменяемой геометрией. В 1967 году опытный Су-7ИГ впервые поднялся в воздух, а в 1970-м начал поступать в войска под обозначением Су-17. Но и в таком варианте самолет был никудышным истребителем. Поэтому вскоре его существенно упростили и отказались от регулируемого воздухозаборника. В результате проведенной модернизации максимальная скорость снизилась с 2300 км/ч у Су-17М3 до 1850 км/ч у Су-17М4. Бомбовая нагрузка превысила 4 т, а взлетная масса вплотную подобралась к 20 т. Истребитель как-то незаметно превратился в бомбардировщик, причем не лучший — бомбардировочные модификации тех же «Фантомов» при аналогичной взлетной массе брали более 7 т бомбовой нагрузки.

Но к этому времени у советских военных были не только фотографии вьетнамских F-111A, но и почти весь самолет — правда, по частям. Его способность лететь «под радаром» на очень малой высоте, используя поверхность земли как маскировку, произвела на них очень сильное впечатление, и ОКБ «Сухого» получило задание на разработку советского аналога. Конечно, это не было полным копированием, как в случае с Ту-4 (точной копией американского Boeing B 29 Superfortess), на котором даже болты были с дюймовой резьбой. Мало того, из названия исчезло слово «истребитель». Но идеология осталась той же, что и у F-111, вплоть до того, что первый проект предусматривал вертикальный взлет и посадку. Чем ближе дело шло к серийному образцу, тем больше в будущем Су-24 проступали черты F-111. После отказа от вертикального взлета пришла пора отказываться от маловысотных полетов на сверхзвуке. Отказ от регулируемых воздухозаборников снизил максимальную скорость с 2,18 М до 1,35 М, что, впрочем, никак не сказалось на полетах на малых высотах, где большие скорости невозможны.

Самолет создавался в страшной спешке, с огромным количеством недоделок и недоработок. Доходило вплоть до анекдотичных ситуаций. Как вспоминал авиаконструктор О. Самойлович, «обводы носового конуса были нами скопированы с самолета F-111. В ходе летных испытаний обнаружилось, что излучение радиолокатора миллиметрового диапазона ‘Орион’ проходит через сильно заостренный радиопрозрачный конус с большими потерями. Для переделки обводов головной части самолета времени не оставалось. Поэтому мы просто затупили конус. Получилось некрасиво, но выхода не было».

Однако не все было так смешно. Су-24 стал для КБ «Сухого» cамым «кровавым» самолетом — при его испытаниях разбилось десять самолетов и погибло 13 летчиков-испытателей: в полетах обрывались тяги поворотного пилона, разрушались механизмы поворота консоли крыла, отказывали системы продольного управления. И все-таки в 1974 году самолет стал поступать на вооружение. Его первое боевое применение вообще было позорным: в ноябре 1975 года он участвовал в подавлении восстания на большом противолодочном корабле «Сторожевой», экипаж которого планировал, подобно легендарной «Авроре», стать на рейд у Дворцовой набережной. Су-24 обстрелял «Сторожевой» из бортовой пушки, ранив часть экипажа и заставив корабль застопорить ход. Миссия была названа «блестящей». Дальнейшая биография не принесла Су-24, как и его прототипу F-111, особых лавров.

Сужение

Задачи, для решения которых применяют сужение крыла, существенно различаются для самолетов разного назначения. У самолетов с высоким аэродинамическим качеством крыло, как правило, большого удлинения > 8. Для равномерного распределения погонной подъемной силы вдоль размаха консоль должна быть эллиптической в плане. Однако, эллипс нетехнологичен. Применяя трапециевидное крыло с сужением, достигают близкого к эллиптическому крылу распределения подъемной силы вдоль размаха крыла.

Для парителей сужение крыла влияет и на характер обтекания разных участков крыла. На маленьких скоростях, где весьма критично полетное число Рейнольдса, необходимо помнить, что при сужении 2 число Re корневого и концевого профилей крыла тоже отличается вдвое.

На крыльях большого удлинения, сужение крыла облегчает построение лонжерона свободно несущего крыла. Из-за сужения, при профиле по размаху равной относительной толщины, в корневой части строительная высота лонжерона получается существенно больше, что способствует оптимизации его конструкции по весу. Все отмеченное важно для неманевренных самолетов (планеры, бомбардировщики, грузо-пассажирские).

Для маневренных самолетов, класса пилотажки или истребителя, сужение крыла преследует совсем другие цели. У этих самолетов удлинение крыла, как правило, около 5?6 и меньше. В условиях ближнего воздушного боя очень важна высокая угловая скорость по крену и высокое угловое ускорение по крену. Сначала разберем, почему они важны.

В ближнем бою побеждает самолет, способный двигаться по криволинейным траекториям меньшего радиуса кривизны. Т.е. при равной скорости – с большими перегрузками. Но перегрузки большого значения возможны только в плоскости симметрии крыла. Поэтому для преследования задача упрощается и догоняющий пилот может упреждать движение цели, поскольку все многообразие движений сводится к одной плоскости. Скомпенсировать этот факт возможно только быстрым поворотом самолета по крену (а вместе с ним и упомянутой плоскости). Если у догоняющего самолета скорость и ускорение по крену меньше, он не способен долго продержаться в хвосте для прицельной стрельбы. Соответственно, наоборот, при большей угловой скорости по крену, есть все предпосылки догнать цель и сблизиться для прицельной стрельбы.

Конструкция

В состав крыла такого самолета входят:

  • Поворотные детали;
  • средние части конструкции;
  • центрального плана;
  • устройство поворота, в качестве которого используются винтовые подъемники.

Поворотные консоли устанавливают так, чтобы они были в положение минимального угла стреловидности. Если же осуществляются рейсы на сверхзвуковой скорости, данные консоли устанавливают в положение наиболее большого угла.

самолеты с изменяемой стреловидностью крыла

Угловая скорость по крену

Во время вращения самолета вокруг продольной оси на крыло действует демпфирующий момент, противодействующий вращению. Возникает этот момент из-за разных местных углов атаки консолей крыла. Действительно, скорость набегающего потока векторно складывается с линейной скоростью конца консоли, направленной по касательной в плоскости, перпендикулярной оси самолета. Допустим, самолет вращается по часовой стрелке и в рассматриваемый момент консоли крыла горизонтальны. Правая консоль движется вниз, левая – вверх. Местный угол атаки профиля крыла на конце правой консоли увеличивается и подъемная сила на конце правой консоли растет. На левой консоли местный угол атаки ее конца уменьшается, или даже становится отрицательным – это зависит от соотношения линейной скорости самолета, скорости его вращения и размаха крыла. Из-за разницы местных углов атаки возникает момент по крену, тормозящий вращение самолета. Причем основной вклад в создание этого демпфирующего момента вносят концы консолей. Зависимость погонного демпфирующего момента участка крыла от расстояния до продольной оси самолета – квадратичная. Потому что линейно к концу консоли нарастает плечо силы, и линейно же нарастает компонента линейной тангенциальной скорости, векторная сумма которой со скоростью самолета и определяет местный угол атаки, а значит и С y и подъемную силу. В результате, крыло с сужением 2 должно было бы иметь вчетверо меньший демпфирующий момент по крену в сравнении с прямоугольным крылом. В действительности, процессы несколько сложнее, т.к. выше не учтено изменение распределения погонной подъемной силы по размаху крыла. Это явление уменьшает эффект от сужения. В теории крыла доказано, что при переходе от прямоугольного крыла к крылу с сужением демпфирующий момент пропорционален величине (n+3)/(2(n+1)), где n – сужение крыла. Т.е. демпфирующий момент прямоугольного крыла вдвое больше равного ему по площади и размаху треугольного крыла. А это значит, что при одинаковых элеронах и угле их отклонения крыло с сужением будет вращаться по крену с большей угловой скоростью.

Особенно заметно влияние сужения на угловую скорость по крену у треугольного крыла – МИГ-21 во Вьетнаме в ближнем бою абсолютно превосходил фантом F-4, в т.ч. из-за дикой маневренности по крену. Впервые с этим явлением столкнулись на испытаниях Ла-250, имеющего треугольное крыло, да еще малого удлинения. Испытатели справились с ним только после установки системы гиростабилизации по крену. Система была, между прочим, гидромеханическая, без электроники.

Список самолётов с изменяемой стреловидностью крыла

  • СССР Су-17/-20/-22 (2867 экз.)
  • СССР МиГ-23 (3630+769 экз.)
  • СССР Су-24 (~1400 экз.)
  • СССР МиГ-27 (650+760 экз.)
  • СССР Ту-22М (497 экз.)
  • СССР Ту-160 (35 экз.)
  • США General Dynamics F-111 (640 экз., с 1967 г., первый серийный)
  • США Grumman F-14 Tomcat (712 экз.)
  • США Rockwell B-1 Lancer (104 экз.)
  • Франция Франция Франция Dassault Mirage G (3 экспериментальных, 60-е — 70-е)
  • Евросоюз Panavia Tornado (~1000 экз.)
  • Messerschmitt P.1101 (англ.) (1944)
  • Bell X-5 (1947, экспериментальный, копия Messerschmitt P.1101)
  • NASA AD-1 (экспериментальный)
  • Northrop Grumman Switchblade (англ.) (концепт)
  • Northrop Switchblade (англ.) (концепт)
  • Grumman XF10F Jaguar (англ.) (прототип)
  • Short SB5 (англ.) (прототип)

Угловое ускорение по крену

Здесь сужение сильно влияет на момент инерции самолета относительно продольной оси, который, практически равен моменту инерции крыла. При вычислении момента инерции берется интеграл от произведения элементарной погонной массы на квадрат расстояния от оси. Допустим, у нас крыло с сужением 2. Тогда погонная масса на конце крыла будет вчетверо меньше, чем у корня (площадь профиля с вдвое меньшей хордой меньше вчетверо). В этом случае момент инерции крыла с сужением 2 будет теоретически в 16 раз меньше равного ему прямоугольного крыла. На практике разница меньше, из-за, к примеру, одинаковой по размаху толщины обшивки. Тем не менее, крыло с сужением будет набирать угловую скорость по крену во много раз быстрее. Кстати, гасить угловую скорость по крену такое крыло будет тоже быстрее, что важно для точного выхода пилотажки из серии бочек или из штопора.

Для тренировочных моделей излишняя маневренность по крену крайне вредна, потому что требует от пилота высокой квалификации и автоматизма в управлении моделью по крену.

Помимо сужения, на указанные характеристики еще сильнее влияет относительное удлинение крыла. Настолько сильно, что при большом удлинении отмеченные зависимости уже не столь значимы. Вместе с тем, большие удлинения характерны для неманевренных самолетов. Поэтому динамические характеристики там и не важны.

Стреловидность

С приходом большой авиации в эпоху околозвуковых и сверхзвуковых скоростей несущее крыло приобрело стреловидность. Эта геометрическая характеристика позволила снизить эффект резкого роста С x на околозвуковых скоростях. Собственно, другого положительного свойства стреловидность не давала, ухудшая практически все аэродинамические характеристики, и создавая еще больше проблем конструкторам.

В авиации малых скоростей, к которой относятся и все летающие модели, стреловидность по аэродинамическим соображениям не применяется, за одним исключением, – на самолетах-бесхвостках.

Зачем стреловидность в бесхвостках?

В первой части статьи уже упоминалось, что для обеспечения продольной устойчивости самолета без стабилизатора существует два способа. Первый – применение стабилизирующегося S-образного профиля на крыле – рассмотрен там же. Напомним, что этому способу присущ сильный недостаток, – узкий полетный диапазон С y, из-за чего приходится резко снижать нагрузку на крыло.

Второй способ обеспечения продольной устойчивости бесхвостки заключается в комбинации стреловидного крыла с отрицательной круткой концевого профиля. В этом случае, концевые участки крыла, всегда находятся на меньших углах атаки, чем корневые участки крыла. У большинства профилей поляра в диапазоне полетных углов атаки образована параболой (выпуклая кривая). Поэтому элементарные приращения подъемной силы при увеличении угла атаки на концах крыла (сзади) будут больше, чем у корневой части (спереди), что и обеспечивает продольную балансировку.

У самолетов обычной схемы стреловидное крыло всегда затрудняет расчет продольной балансировки. Поэтому часто при расчетах используют аэродинамически эквивалентное прямоугольное крыло. При этом размах его принимают равным размаху стреловидного крыла, а хорду – называют средней аэродинамической хордой крыла

, или коротко, — САХ. У стреловидного крыла без сужения САХ находится ровно на полуразмахе крыла, а ее длина равна хорде крыла. У стреловидного крыла с сужением расчет положения САХ чаще всего ведут путем графических построений, понятных из рисунка:

Нужно учитывать при построениях, что таким способом можно найти САХ только у крыла без крутки. Для стреловидного крыла с круткой, аэродинамически подобного прямоугольного крыла вообще не построить.

У моделей-копий стреловидность крыла, – один из наиболее важных формообразующих факторов, которым нельзя пренебречь, воспринимаемый, поэтому конструкторами как неизбежное зло. Почему, собственно, зло?

Во-первых, у стреловидного крыла сумма длин консолей крыла больше его размаха. Значит, при одинаковой длине консолей (и весе) стреловидное крыло будет иметь меньшее удлинение, чем прямое. Соответственно – меньшее аэродинамическое качество.

Во-вторых, при положительной стреловидности обтекающий крыло воздух приобретает небольшую скорость, направленную вдоль консоли к ее концу:

При этом направление скорости потока усиливает эффект образования концевого вихря, что дополнительно снижает аэродинамическое качество крыла. При отрицательной (обратной) стреловидности, наоборот, скос потока снижает концевой эффект и повышает качество крыла. Зато возникает масса проблем обеспечения крутильной устойчивости конструкции крыла для борьбы с флаттером. Флаттер – явление сложное, погубившее тысячи пилотов на заре авиации. Здесь мы его рассматривать не будем, отметив лишь, что для крыла обратной стреловидности (КОС) добиться устойчивости по флаттеру приемлемыми по стоимости способами до сих пор не смогли даже в большой авиации.

Поскольку мы упомянули крыло обратной стреловидности, нельзя умолчать о его влиянии на аэродинамику самолета. Оно совсем невелико. Упорные попытки в боевой авиации использовать КОС обусловлены вовсе не аэродинамикой, а радиолокационной заметностью самолета. Наиболее отражающими радиолокационную волну у самолета являются кромки крыльев. А у самолета с КОС на большей части ракурсов фронтальной полусферы его облучения отраженная волна экранируется фюзеляжем. Тем не менее, конструктивные проблемы до сих пор не вывели эти самолеты из стадии экспериментальных образцов. У американцев это был Х-29, а у нас – «Беркут» КБ Сухого:

В-третьих, в конструкции стреловидного крыла, в полете помимо изгибных моментов по лонжерону, возникают сопоставимые по величине крутильные моменты, требующие от конструктора принятия дополнительных мер (а это дополнительный вес) по обеспечению крутильной жесткости крыла.

Несмотря на сплошные недостатки, стреловидность все же встречается и у низкоскоростных самолетов. Тому есть пара причин. Первая – как ни странно, но конструкторы в большой авиации, как и моделисты иногда промахивались в расчетах центровки. Чтобы переделывать не весь самолет, в небольших пределах можно переместить фокус всего крыла, придав его консолям небольшую стреловидность. Именно так менялась стреловидность консолей у самого массового самолета Великой Отечественной войны, штурмовика ИЛ-2. По тем же причинам известный польский планер «Бланик» получил небольшую обратную стреловидность:

Вторая причина – стреловидность крыла используется как один из способов повышения поперечной устойчивости самолета. При возникновении крена на крыло, самолет начинает скольжение в сторону крена. При положительной стреловидности консоли крыла оказываются в разных условиях обтекания:

Как видно из рисунка, эквивалентный размах консоли, в сторону которой идет крен и скольжение, больше, чем у другой. Значит и подъемная сила на ней становится больше, что и выправляет крен самолета. В отличие от других способов обеспечения поперечной устойчивости, стреловидность не нарушает симметрии самолета в прямом и перевернутом полетах, что особенно ценно у пилотажных самолетов. Впрочем, чрезмерная устойчивость там тоже вредна. Поэтому большинство пилотажек имеет небольшую стреловидность крыла.

Самолеты с изменяемой геометрией и стреловидностью крыльев

.

«Конструктивная сложность крыла с изменяемой стреловидностью препятствует его широкому применению»,- констатировали в 1955 году авторы английского справочника «Реактивные самолеты мира». Тем не менее уже тогда, повозившись с » сырыми», несовершенными конструкциями, авиастроители убедились: применение крыла, стреловидность которого меняется в зависимости от скорости полета, позволяет на треть увеличить радиус действия машины и на четверть снизить ее посадочную скорость. Строго говоря, изменяемая геометрия, в широком смысле этого слова, не такая уж новинка в авиации. Убирающееся шасси, воздушный винт изменяемого шага, всевозможные средства посадочной механизации — действие каждого из

этих устройств связано с изменением конфигурации летательного аппарата. Да и сам принцип управления самолетом основан на отклонении рулевых поверхностей крыла или оперения. Еще братья Райт заставляли по- ѕ виноваться свой аэроплан, перекашивая концевые части плоскостей… Трудно создать машину, лишенную обычных «недугов» опытного самолета. Выпуск закрылков может вызвать резкую перебалансировку аппарата, затруднить пилотирование, недостаточная жесткость крыла — всевозможные вибрации и как следствие — даже разрушение конструкции. Случалось, прочное, но чересчур » гибкое» стреловидное крыло так скручивалось при отклонении элеронов, что действовали они «наоборот», накреняли самолет вопреки действиям пилота в обратную сторону…

Словом, даже традиционные методы изменения геометрии самолета таят в себе много сюрпризов. Проблем куда больше, если посягают на статичность самого крыла: изменяют в полете его размах, стреловидность, вовсе убирают, скажем, одно из крыльев биплана. С трудностями не справился французский конструктор Махонин, построивший в начале 30-х годов самолет с телескопически раздвигающимся крылом. Механизм не был даже проверен в полете.

Самолеты с переменной геометрией удалось построить советскому авиаконструктору и летчику В. Шевченко. Вот что написал в отчете об испытании монобиплана Шевченко летчик-испытатель Г. Шиянов: » Самолет в течение всего процесса уборки сохраняет устойчивый полет и не требует дополнительной работы рулями. Вибраций, срывов и других ненормальных явлений не наблюдается. Уборка происходит в течение 6-7 с. По ощущениям летчика процесс уборки и выпуска крыльев может быть уподоблен уборке и выпуску шасси обычной машины «.

К 1946 году, создав немало летавших образцов и проектов монобипланов, Шевченко вплотную подходит к идее самолета с изменяемой стреловидностью крыла и разрабатывает, видимо, первый в мире проект такой машины. Почему же, «обжегшись» на первых летавших образцах, конструкторы продолжали заниматься переменной стреловидностью? …Давно минули времена, когда соотношение максимальной и посадочной скоростей составляло три-четыре.

Теперь как бы ни росла скорость самолетов, их колеса не могут соприкасаться с землей при еще большей скорости — она и так уже перевалила за 300 км/ч. Вот и выходит: с каждым шагом вперед скоростной диапазон увеличивается, а отношение предельных — максимальной и посадочной — скоростей подскочило до десяти. Стреловидные крылья вполне удовлетворяют своему назначению в широком диапазоне — от околозвуковой до скорости, соответствующей удвоенной звуковой. А вот на малых скоростях стреловидность мешает. Такое крыло придает машине избыточную поперечную устойчивость, затрудняет выполнение предпосадочных маневров. Несущие свойства плоскостей хуже, чем у прямого крыла: величину подъемной силы определяет не скорость набегающего потока, а ее составляющая, направленная перпендикулярно передней кромке стреловидного крыла. Вдобавок при полете на больших углах атаки снижается эффективность средств механизации, что ухудшает взлетно-посадочные свойства машины. Между тем для современного самолета находится работа практически на всех скоростях и высотах. Проектировать же машину классическим методом компромиссов между противоречивыми требованиями становится все труднее и труднее. Конструкторы стараются избежать обилия типов боевых машин, стремясь воплотить свойства каждой из них в одной, универсальной, многоцелевой. Подобный самолет должен на предельно малой высоте со сверхзвуковой скоростью проникать на территорию противника. Его же приходится использовать для перехвата врага, летящего на предельной высоте. Не исключено, что многоцелевой машине придется сопровождать в дальнем рейсе бомбардировщик.

Если решению одной из этих задач будет способствовать крыло малой площади и большой стреловидности, то для другой, скажем, для полета на дальность, требования диаметрально противоположные.

Где же выход? Конечно, уже в схеме монобиплана. — Но сам принцип изменения геометрии главнейшего элемента летательной машины — крыла помог и на этот раз. На авиационном празднике в Домодедове (1967 г.) зрители видели, как над трибунами проносились советские самолеты с крылом переменной стреловидности. Плавно и быстро занимают крылья положение, наиболее подходящее для поставленной боевой задачи.

Это непростая задача — заставить крыло в любом положении выполнять свою основную функцию и не быть источником разномастных колебаний. Конструкторам нужно было добиться, чтобы при перемене угла стреловидности машина не теряла устойчивости, была управляемой. Ведь мало того, что при этом перемещается масса, «гуляет» и точка приложения аэродинамической нагрузки на несущую поверхность, фокус крыла, иначе влияют друг на друга воздушные потоки на крыле, фюзеляже, хвостовом оперении. А поворотный узел крыла — это целый комплекс проблем! Во-первых, узел должен быть легким и компактным и при этом выдерживать колоссальные нагрузки и не иметь люфтов. Во-вторых, он должен обеспечить строгую синхронность отклонения консолей.

И все-таки все важнейшие проблемы измерения стреловидности были успешно решены. Лучшее тому свидетельство — полеты таких машин в СССР, Франции, США. Но авиастроители идут дальше. На страницах авиационных журналов мелькают изображения самолетов следующего поколения. Судя по этим проектам, принцип изменяемой геометрии применен не только к крыльям. В полете меняется конфигурация всего аппарата.

САМОЛЕТЫ С ВЕРТИКАЛЬНЫМ ВЗЛЕТОМ И ПОСАДКОЙ

Стоит протянуть исторические связи, рассказывая и о другой, тоже неновой идее — самолете с вертикальным

взлетом и посадкой. Но не только потому, что история интересна, так сказать, сама по себе. Вертикально взлетающие аппараты и самолеты с переменной стреловидностью крыла — попытка разными средствами решить одну и гу же проблему, противоречия между скоростными и взлетно-посадочными режимами. И если

конструкторы-«геометры» стремятся облегчить все-таки нормальные по-самолетному — взлет и посадку, то «вертикальщики» напрочь устранили и разбег и пробег.

Одно из решений проблемы точечного старта — взлет с рампы. С мощным двигателем, с ракетными ускорителями, на форсаже истребитель пулей срывается со специального сооружения — рампы и, подпираемый огромной тягой, идет ввысь. Так в конце 50-х годов стартовал на МиГ-19 Г. Шиянов. » Шиянов взлетал с отдаленной точки аэродрома,— вспоминает летчик-испытатель И. Шелест,— и зрелище это воспринималось в первую секунду как нечто сверхъестественное, как изгнание из пекла провинившегося сатаны. Будто разверзлась вдруг земля и с раскаленной магмой выплеснула некий черный предмет. Двумя секундами позже, опережая кромешный огонь и дым, сознание выявило в темном предмете самолет… Потом адский грохот резко обрывался. И тем беззвучней, грациозней казалось устремление розовогрудого МиГа навстречу солнцу, небу, жизни «. Однако машине, могущей так взлетать, не хватало » точечной» посадки. Садился МиГ, как обычно, с визгом покрышек о бетонку, с выпущенными на максимальный угол закрылками, иногда с тормозным парашютом.

Взлетал с рампы и американский » Супер Сейбр «. Двигатель (на форсаже) развивал тягу 7250 кг. Стартовый ускоритель — 59 тыс. кг! Уже через 4 с после отделения от рампы скорость достигала 440 км/ч.

Без рампы не мог ни стартовать, ни приземляться американский самолет вертикального взлета и посадки Райан Х-13. Оснастили машину мощным ТРД, тяга которого превышала взлетный вес Х-13. Вместе с рампой машина принимала вертикальное положение, повисала на крюке, а стартуя, отсоединялась от него. Посадка требовала от пилота ювелирной работы: нужно было плавно, увеличивая угол атаки, затормозить Х-13, перевести его из горизонтального в вертикальное положение, зацепиться крюком за трос, подвести машину к рампе и «состыковаться» с ней. На висении пилот манипулирует газовыми рулями и, если кабина не оснащена поворотным креслом, находится в не слишком удобной позиции — ногами кверху.

Непросто было и управлять зависнувшими самолетами. Порыв ветра, «собственная» выхлопная струя, отраженная бетонкой,— все это помешало Х-13 стать боевой машиной.

Строили в 50-х годах винтовые самолеты, обходившиеся без рампы, Конвер ХРУ-1 и Локхид ХРУ-1. Шасси располагалось: у » Конвера » на концах крестообразного стабилизатора, а у «Локхида» на концах треугольного крыла, верхнего и нижнего киля. Стартовали машины из положения «стоя на хвосте» и переходили затем в «нормальный» полет.

Подобно первым самолетам с переменной стреловидностью, ранние вертикально взлетающие не стали основой нынешних аппаратов такого типа, но помогли конструкторам осознать всю сложность проблемы, наметить круг еще не решенных задач. Важно было не просто найти оптимальную схему СВВП (так коротко называют самолеты с вертикальным взлетом и посадкой), а понять общие закономерности «висячего» полета, посадки с учетом влияния земли, управления без всяких аэродинамических рулей…

Для этих целей в нашей стране построили летающий стенд «Турболет» — летающий ТРД со смонтированными на нем кабиной, шасси, а самое главное — крестообразно расположенными штангами газовых рулей. Летал на » Турболете » Ю. Гарнаев. Похожий экспериментальный аппарат создала и английская . В отличие от нашего «Турболета «, у которого двигатель располагался вертикально, ТРД «англичанина» расположили «лежа»… Струю направляли вниз и в стороны специальными трубами — дефлекторами. Цельноповоротные двигатели, изменяющие свое положение в зависимости от режима — взлета-посадки, разгона-торможения, крейсерского полета, ТРД с дефлекторами для отклонения струи, комбинированные силовые установки, состоящие из независимых друг от друга маршевого и подъемных двигателей,— СВВП таких схем построены в ведущих авиационных державах. Примерами самолетов с отклоняемой реактивной струей могут служить советский СВВП, показанный в 1967 году на авиационном празднике в Домодедове, и ХоукерСиддли «Хэрриер», несколько вариантов которого серийно выпускаются в Англии.

О перспективах вертикально взле тающей авиации еще в 1966 году журнал «Спейс энд эронотикс» (США) писал так: «…Двигатель с изменяемым направлением вектора тяги обеспечивает хорошие характеристики при взлете и операциях по перехвату, однако дальность полета такого самолета мала. Небольшой дозвуковой самолет с турбовентиляторами, расположенными в крыле, имеет хорошие характеристики в полете у земли, однако дальность этой машины ограничена. В качестве двигателей для вертикально взлетающего или с малой длиной разбега самолета… должны быть выбраны или ТВРД (турбовентиляторные реактивные двигатели), имеющие лучшие характеристики при полете у земли, или ТРД, по-видимому, более подходящие для полетов с большими числами М на большой высоте. Одним из компромиссных решений является применение ТВРД с изменяемым направлением вектора тяги, с легкими подъемными двигателями; двигателями, определяющими размеры самолета, будут маршевые, а не подъемные двигатели».

Новейший представитель семейства вертикально взлетающих — опытный многоцелевой самолет ХРУ-12А (США). По схеме эта машина, предназначенная для базирования на авианосцах,— » утка» с горизонтальным оперением в носовой части фюзеляжа. Вертикальное оперение на концах очень короткого треугольного крыла. Часть реактивной струи отводится от двигателя и выбрасывается вертикально вниз через щели в крыле. В зависимости от мощности отведенного потока самолет стартует вертикально или пробегает перед отрывом около 90 м.

ВОЗДУШНЫЕ АВИАНОСЦЫ.

Второе рождение переживает сейчас еще одна, быть может, самая давняя идея — воздушного авианосца, боевая комбинация двух или нескольких летательных аппаратов. Еще в первую мировую войну англичане испытали так называемую » антицеппелинную» систему: дирижабль патрулировал в ожидании германских цеппелинов-бомбовозов с подвешенным к нему истребителем. Если приближался враг, самолет отдалялся от оболочки и, отбив атаку, возвращался на авиаматку. В нашей стране успешно прошли испытания звенья В. Вахмистрова: большие самолеты, несшие на себе истребители И-4, И-5, И-16. В начале Великой Отечественной войны несколько звеньев приняли участие в боевых действиях.

После войны американцы экспериментировали с комбинацией бомбардировщика В-29 и двух прямокрылых истребителей Р-84. Как бы эскортируя » Сверхкрепость «, Р-84 летели с ней крылом к крылу:

правая и левая консоли В-29 были сцеплены с плоскостями истребителей. Двигатели Р-84 работали на умеренном, экономичном режиме. Из-за большого удлинения «составного» крыла повышалось аэродинамическое качество. При необходимости истребители отцеплялись и защищали своего лидера.

Как выяснилось много лет спустя, лучшие шансы на будущее оказались у другой комбинации: В-29 со специально построенным «бортовым» истребителем ХР-85 «Гоблин» . При погрузке стреловидное крыло ХР-85 складывалось. Оперение компактное, из четырех плоскостей. По выражению авторов справочника «Реактивные самолеты мира», истребитель ХР-85 фактически превратился в крылатый реактивный двигатель, на котором буквально верхом восседал летчик».

Летом 1948 года состоялось первое отделение «бортового» истребителя от авиаматки. Опытный летчик-испытатель не смог причалить самолетик к носителю и, едва избежав гибели, приземлил машину с помощью аварийной посадочной лыжи. Трудности с возвращением ХР-85 на борт носителя разочаровали военных, эксперименты прекратили. Но, как оказалось, до поры…

С конца 60-х — начала 70-х годов занимается по заданию ВВС США разработкой военной комбинации самолета-авианосца и телеуправляемых летательных аппаратов. Поставленная задача — увеличить радиус действия легких, высокоманевренных боевых машин — совпадала с надеждой «Локхид» найти новую сферу применения для своего транспортного самолета сверхбольшой вместимости С-5А. В 1971 году над комбинацией стала работать и получила в 1972 году от ВВС тактико-техническое задание на проектирование воздушного авианосца для телеуправляемых аппаратов: модифицированного

Боин г-747 и шести аппаратов самолетного типа Райан ВОМ-34. Есть и вариант В-747 и 24 специально спроектированных телеуправляемых аппаратов. Внутри просторной средней части носителя, превращенной в ангар, самолеты будут находиться во время их транспортировки. Из чрева «Боинга» самолеты смогут стартовать через каждые четверть часа. С той же частотой посадка вернувшихся аппаратов. Стартом, посадкой и выполнением боевого задания будут руководить операторы на борту авианосца. Помогать им должна система, состоящая из телевизионной установки вблизи посадочной трапеции и компьютера.

Как предполагается, авианосец доставит телеуправляемые самолеты к району боевых действий, но сам останется в недосягаемости для ПВО противника. Выполнив задание, снаряды возвращаются на «Боинг». Если цель очень далеко от базы и у «матки» не хватает топлива на всю операцию, то стартуют два самолета. Один несет телеуправляемые самолеты, другой » под завязку » залит топливом. Первый выпускает подопечных и сразуже возвращается. Второй же управляет самолетами, принимает их на борт и возвращает «домой»…

З А К Л Ю Ч Е Н И Е

Изменяемая стреловидность, вертикальный взлет и посадка, комбинация воздушного авианосца с телеуправляемыми самолетами, многие другие новинки не вытеснили из военной авиации обычные машины. Одна из причин (помимо соображений, касающихся боевого применения самолетов) экономическая.

Мало того, что с прогрессом авиации летательные аппараты становятся все сложнее в проектировании, испытаниях, производстве, они непрерывно дорожают. Вот лишь несколько цифр. Стоимость истребителя СПАД времен первой мировой войны — 10 242 доллара. «Лайтнинга» выпуска 1932 года — 134 284, а » Сейбра » (1950 г.) — 218 460 долларов. «Фантом» (1962 г.) стоит уже более 2, а F-111 (1963 г.) — почти 6 миллионов! Изрядную лепту в стоимость новых самолетов вносит оборудование, которым насыщен любой современный истребитель, штурмовик или бомбардировщик.

Чрезвычайно удорожилась и подготовка пилотов. Десятилетие назад, по данным авторитетного журнала «Интеравиа» (Швейцария), полная стоимость подготовки летчика сверхзвукового истребителя » Лайтнинг» составляла 364 тысячи долларов. Сетовали американские военные на сложность обслуживания современных истребителей-бомбардировщиков во время вьетнамской войны. По свидетельству журнала «Интеравиа», «70% самолето-вылетов тактической авиации затрачивается на удары и по наземным целям с малых высот в ходе непосредственной поддержки сухопутных войск и изоляции района боевых действий «. Естественно, что боевые действия такого рода требуют быстрой реакции ВВС на запросы войск. Скоростные, но сложные машины, хотя и быстро добирались до цели, упускали момент из-за «холостого» простоя на аэродроме. Именно по этой причине на задание по оперативной поддержке войск чаще, чем современные F-105 «Тандерчиф» и F-4 «Фантом», стартовал устаревший F-100 » Супер Сейбр». К боевому вылету его готовили гораздо быстрее.

Далеко не всегда современные сверхзвуковые самолеты могут использовать и свои высотные данные. Действия в стратосфере, где тактическая авиация неуязвима для зенитных ракет, мало чем помогают наземным войскам. Наиболее подходящие средние высоты опасны и требуют от самолетов хорошей маневренности, а от экипажей отличной летной выучки: ведь на потерях прямо сказывается время пребывания машин в зоне ПВО. Больше заходов на цель — выше вероятность поражения зенитным огнем. Из-за недостаточной маневренности 20-тонный «Тандерчиф» не мог порой выполнить резкий противозенитный маневр и, случалось, становился жертвой дозвуковых северовьетнамских МиГ-17…

Опыт агрессивной войны во Вьетнаме, военные события на Ближнем Востоке заставили западных стратегов не только трезво оценить возможности современной боевой авиации, но и соизмерять соблазнительные данные новейших самолетов с их стоимостью, простотой обслуживания, потребностью в хорошо оснащенных базах. Вот почему, заказывая промышленности авиационную технику, армия, ПВО, другие заказчики руководствуются принципом «цель должна оправдывать средства» . Иначе говоря, не надо требовать от современного самолета для авиаподдержки огромных скоростей и потолка, от истребителяперехватчика — мощного бронирования, и от вертикально взлетающей машины — дальности действия бомбардировщика… » Для иллюстрации этого можно привести пример с американскими самолетами Р-14 и Р-15,— писал генеральный авиаконструктор А. Яковлев.— Эти новейшие универсальные истребители весят 18 — 20 т, их стоимость 10 — 12 млн. долларов за каждый, а ведь по своему назначению они должны быть массовыми самолетами. Очевидно, и сами американцы пришли к выводу о чрезмерной стоимости своих самолетов. Поэтому в начале 70-х годов в США был объявлен конкурс на создание истребителя простой и недорогой конструкции с минимумом оборудования и взлетным весом не более 9 т. В результате в 1974 году появились истребители УР-16 и УР-17, полетный вес которых 8 — 9 т…»

«Следовательно, выбор системы, — заключает А. Яковлев, — должен быть строго обоснован технически, тактически и экономически».

Особое внимание зарубежные авиаконструкторы уделяют специальным самолетам для авиаподдержки наземных войск. Но вопреки, казалось бы, » вечному » стремлению авиаторов летать быстрее, нынешние штурмовики лишь ненамного быстроходнее поршневых ветеранов второй мировой войны. Новейший Ферчалд А-1ОА, например, развивает максимальную скорость 742 км/ч. В крейсерском полете — 355 км/ч. Оснащенная двумя двухконтурными ТРД, машина при взлетном весе 20,5 т несет на внешней подвеске до 8392 кг бомб и ракет. Боевая ноша подвешивается к 24 точкам на крыле и фюзеляже.

Простой по конструкции, живучий самолет предназначен для атаки объектов на поле боя, патрулирования и ударов по вызовам войск, сопровождения боевых и транспортных вертолетов, разведки в тактической глубине… Прогнозы — коварная штукаи. Пройдут годы, время и прогресс внесут свои поправки в долгосрочные перспективы, сделают явью нынешние разработки, снимут с повестки сегодняшние и завтрашние проблемы, поставят новые… Одно очевидно: авиация — динамичная, быстро реагирующая на все новое, отрасль техники — и впредь останется ареной творческого состязания и сотрудничества исследователей различных направлений, инженеров, рабочих, летчиков, всех, кому мы обязаны удивительной возможностью летать вопреки силе земного притяжения.

Крутка

В главе про удлинение крыла показано, что даже у прямого плоского крыла условия обтекания профиля по размаху меняются, в т.ч. из-за концевого вихреобразования. Чтобы снизить его отрицательные последствия, надо установить профиль у концевого сечения под меньшим углом атаки, чем у корневого, – т.е. применить отрицательную крутку крыла. Геометрическая крутка оптимальна только на одной расчетной скорости полета. Чтобы расширить диапазон оптимизации применяют аэродинамическую крутку крыла, – ставят на конце менее несущий профиль. Он обладает меньшей кривизной, и его поляра проходит ниже поляры корневого профиля. В случае хорошего согласования поляр можно сделать крыло, обладающее более широким диапазоном скоростей высокого аэродинамического качества, чем при геометрической крутке. Однако такой способ сложнее в проектировании.

Помимо повышения аэродинамического качества крыла, крутки применяют и для других целей. В главе про стреловидность уже приводился пример использования крутки для обеспечения продольной устойчивости бесхвостки.

Крутка крыльев широко применяется у свободнолетающих моделей для разных целей. В классе F1 модель должна летать кругами. Чтобы получить круги без скольжения, применяют разные углы установки консолей, – это тоже крутка. Иногда, у моделей F1В применяют положительную крутку на ушках крыла. Проигрывая по качеству, такое крыло обладает свойством самоцентрирования в термическом потоке. Летая на субкритических углах атаки, при попадании ушка в находящийся сбоку от траектории полета восходящий поток, обтекание выходит на закритический угол и срывается.

Появляется одновременно момент по крену и по курсу, «доворачивающий» модель в поток. Какая крутка крыла свободнолетающей модели, положительная или отрицательная, оптимальна, зависит в основном от тактики спортсмена.

Крутка крыла приводит к ассиметрии аэродинамики самолета. Тем не менее, есть пример использования аэродинамической крутки на пилотажке. Это модель «Funtana» известного теперь и в Москве Себастьяна Сильвестри:

На этой модели он применил значительное сужение крыла при постоянной вдоль размаха строительной высоте лонжерона. В результате относительная толщина профиля на конце крыла в разы больше, чем у корня. Такая аэродинамическая крутка не нарушает симметрии самолета. Ее достоинство в том, что срыв обтекания при больших углах атаки на концах крыла происходит гораздо позже, чем у корневого сечения. Это позволяет сохранить эффективность управления по крену уже при начавшемся у корня крыла срыве обтекания, – очень полезно для чистого исполнения таких фигур 3D пилотажа как «лифт».

Ссылки

  • Элементы управления NOTAR • Автопилот • АБСУ • Автомат перекоса • Аэродинамический тормоз • Боковая ручка • Вибросигнализатор штурвала • Демпфер рыскания • Крутка крыла • Руль высоты • Руль направления • Рулевой винт • Ручка управления самолётом • Сервокомпенсатор • Спойлер (интерцептор) • Спойлерон • Стопор рулей • Толкатель штурвальной колонки • Триммер • Флаперон • Фенестрон • ЦПГО • Штурвал • ЭДСУ • Элевоны • Электрогидравлический актуатор • Элероны
    Аэродинамика и механизация крыла ACTE • Адаптивное управляемое крыло • Активное аэроупругое крыло • Аэродинамический гребень • Бесхвостка • Вибрирующий предкрылок • Гребень крыла • Законцовка крыла • Закрылок • Закрылок Гоуджа • Закрылок со сдувом пограничного слоя • Кольцевое крыло • Крыло изменяемой стреловидности • Крыло обратной стреловидности • Наплыв крыла • Пластинчатый турбулизатор • Предкрылки • Утка • Щиток Крюгера
    Авионика и приборы ACAS • EFIS • EICAS • GPS • INS • TCAS • Авиагоризонт • БРЛС • Бортовая СЭС ЛА • Бортовой самописец • Вариометр • Высотомер • ИЛС • Индикатор отклонения курса • Компас • Корректор высоты • Командно-пилотажный прибор • Плановый навигационный прибор • Приборная доска • Приёмник воздушного давления • Радиовысотомер • Радиокомпас • Самолётный радиолокационный ответчик • Система воздушных сигналов • Система траекторного управления • Сигнальное табло • Система управления полётом • Стеклянная кабина • Указатель курса • Указатель поворота и скольжения • Указатель скорости
    Управление двигателем и топливная система FADEC • Автомат тяги • Воздушный винт • Кок • Кольцо Тауненда • Конус воздухозаборника • Обтекатель NACA • Несущий винт • ПАЗ • Пластинчатый отсекатель • Подвесной топливный бак • Рампа воздухозаборника • Реверс • РУД • Сверхзвуковой воздухозаборник • Топливный бак • Управление вектором тяги • Форсажная камера
    Шасси и системы торможения Автомат торможения • Гидравлический амортизатор • Демпфер шимми • Парашютно-тормозная установка • Тормозной гак
    Системы покидания Катапультируемое кресло • Спасательная капсула
    Прочие системы Аварийная авиационная турбина • Бомбодержатель • Бортовой туалет • Бортовой трап • ВСУ • Навигационные огни • Гидравлическая система • Бортовые огни • Противообледенительная система • Развлекательная система • Рампа • Речевой информатор • Статоскоп • Система аварийной подачи кислорода • Система кондиционирования • Система отбора воздуха • Система сигнализации пожара в авиации • Фотопулемёт

Поперечное V

Механизм влияния поперечного V крыла на устойчивость самолета по крену достаточно прост, но почему-то и здесь весьма распространены среди моделистов заблуждения. Поэтому разберем его поподробнее.

Допустим самолет с положительным V крыла в прямом полете получил небольшой крен на одну из консолей. Поскольку изначально крыло находилось под некоторым углом атаки к горизонту, то углы атаки консолей накрененного крыла с положительным V уже не будут равны. Приподнятое крыло будет иметь меньший угол атаки, чем слегка опущенное. За счет разности углов атаки консолей различается и соответствующая их подъемная сила. Эта разность образует момент, стремящийся восстановить крен.

Кроме того, при накрененном крыле силы, действующие на каждую консоль, будут выглядеть так:

Горизонтальная сила F 4 вызывает скольжение самолета на левую консоль, — самолет начинает лететь немного боком. Условия обтекания левой консоли почти не меняются, а вот угол атаки правой, приподнятой консоли, уменьшается. В результате F 2 становится меньше F 1, что еще добавляет момент, устраняющий появившийся крен. Эта компонента появляется не сразу после получения крена, а только спустя некоторое время, необходимое для развития скольжения самолета влево, зато она значительно больше по величине, чем первая. Зачастую моделисты говорят только об одной из этих компонент, тогда как в действительности они работают вместе. Обе компоненты связаны с косым обтеканием крыла в крене. Только первая возникает сразу, а вторая – с задержкой.

От чего зависит величина необходимого угла V крыла?

Прежде всего, — от назначения модели. На пилотажке, которая должна вести себя одинаково в прямом и перевернутом полете применение V крыла исключено.

Для моделей, не управляемых по крену, необходим большой угол V крыла для устойчивого полета. Но слишком большое V снижает аэродинамическое качество крыла. Почему?

Посмотрим на крыло в полете без крена:

Из рисунка легко увидеть, что подъемная сила крыла с углом излома в cos раз меньше прямого плоского крыла из тех же консолей. Соответственно, в cos раз уменьшается и аэродинамическое качество. Чтобы не так сильно снижать качество при обеспечении устойчивости по крену делают крыло из центроплана и ушек:

Центральная часть крыла, — наиболее несущая, здесь нет концевых эффектов снижения С y. Ее делают прямой. А потери в качестве на ушках меньше, чем у сопоставимого по поперечной устойчивости крыла с одинарным V. Еще более распространено у свободников три точки излома крыла:

Конструктивно оно сложнее, зато обладает большим аэродинамическим качеством при равной с одинарным V крыла поперечной устойчивости.

У моделей, управляемых по крену, но непилотажных, к примеру, у тренера, делают угол ? от 5 до 10 градусов, в зависимости от степени «дубовости» обучаемого. Помимо прямого проигрыша в качестве из-за V крыла, есть еще один, добавочный источник потерь. Наклон к концу консоли вызывает также поперечный скос потока, аналогичный описанному в главе про стреловидность. Этот скос также способствует концевому вихреобразованию, что дополнительно снижает качество крыла.

Поскольку мы заговорили о поперечной устойчивости (по крену), нельзя не упомянуть о ее взаимосвязи с путевой устойчивостью (по курсу) самолета. Эта взаимосвязь выражается в том, что не любое сочетание путевой и поперечной устойчивости обеспечивает нормальный полет самолета.

Остановимся на этом подробнее.

В первом приближении путевая устойчивость самолета определяется величиной киля, — вертикальной части оперения. Чем площадь и удлинение киля больше, — тем больше путевая устойчивость. Поперечная же устойчивость самолета определяется V – крыла, и обеспечивается в большей степени в процессе бокового скольжения на опустившуюся консоль крыла. В ходе развития скольжения киль обеспечивает его демпфирование. Если путевая устойчивость (грубо – площадь киля) слишком мала, то демпфирование процесса скольжения недостаточно. В этом случае, даже после выправления первоначально полученного крена, самолет еще некоторое время продолжает скольжение в том же направлении. Оно порождает новый крен самолета, но уже на другую консоль. Вместо того, чтобы вернуться к нормальному полету, самолет начинает раскачиваться как маятник с возрастающей амплитудой. Таким образом, при чрезмерной поперечной устойчивости и недостаточной путевой, имеет место колебательная (маятниковая) неустойчивость полета самолета.

Если же путевая устойчивость для данной поперечной слишком велика, то возникает другая проблема. Когда самолет введен в установившейся вираж, характер обтекания консолей крыла существенно различается. Внешняя консоль движется по большему радиусу, чем внутренняя. Соответственно, линейная скорость обтекания воздухом внешней консоли больше, чем внутренней. Значит, подъемная сила внешней консоли больше, чем внутренней, что создает момент, стремящийся увеличить крен самолета внутрь виража. Если пилот не вмешивается, то самолет затягивает во все более узкий вираж, переходящий в воронкообразную спираль. У грамотно спроектированного самолета, когда его киль не слишком велик, доворачивающий момент компенсируется в установившемся вираже скольжением самолета на внутреннюю консоль. То есть, продольная ось самолета не совпадает с касательной к его траектории на вираже. Нос самолета слегка развернут наружу виража. Такое скольжение создает момент, компенсирующий описанный выше доворачивающий момент. В этом случае самолет самостоятельно, без участия пилота способен выполнять установившейся вираж.

Итак, если V крыла слишком велико, а киль мал, — можно получить колебательную (маятниковую) неустойчивость полета. Если же V крыла мало, а киль велик, — можно получить спирально неустойчивый полет. Диапазон допустимых соотношений сильно зависит от степени аэродинамического совершенства самолета. При большом миделе фюзеляжа самолет сильно демпфирован, и указанные неустойчивости могут не появиться ни при каком соотношении поперечной и путевой устойчивости.

У модели с большими элеронами процессы неустойчивого полета всегда может выправить пилот. Но когда модель летит только «на ручке», — это утомляет пилота и снижает удовольствие от пилотирования.

Ход выполнения программы AFVG

31 октября 1965 года British Aircraft Corporation и GAMD, у которых с технической точки зрения позиции совпадали, представили первый проект самолета: двухмоторный, двухместный, с изменяемой геометрией крыла и максимальным весом в 16 тонн. Двигателями должны были стать Bristol-Snecma M45G, мощности которых было недостаточно.

Генеральный штаб, желавший получить самолет с большим боевым радиусом, переключился на самолет весом 23 тонны. Учитывая финансовую сторону, руководящий комитет запросил самолет весом 20 тонн. Двигатели Bristol-Snecma были рассмотрены в нескольких вариантах проекта. В конечном итоге, было решено, что невозможно создать самолет, который был бы в состоянии соответствовать различным требованиям спецификации. Было решено, что необходимо разработать две версии: перехватчик со слабыми возможностями ударного самолета и ударный самолет с небольшими возможностями перехватчика.

Проблемы с силовой установкой усложнялись. Pratt & Whitney и SNECMA подписали соглашение, по которому американцы расширяли свое технологическое присутствие в Европе. Со своей стороны компания Rolls-Royce была обеспокоена и опасалась оказаться в долгосрочной перспективе изолированной и обреченной на финансовые проблемы.

Чтобы склонить компанию Dassault в сторону проекта франко британского самолета с изменяемой геометрией крыла, в генштабе ВВС, который предпочитал двигатель Rolls-Royce, было заявлено, что готовы принять Mirage F1 при условии, что компания сделает выбор в пользу SNECMA TF306. В планах генштаба было предложить компании GAMD два варианта: Mirage F1 и франко-британский самолет с изменяемой геометрией крыла или французский самолет с изменяемой геометрией крыла (Mirage G) без Mirage F1, поскольку отечественный самолет с ИГ будет стоить больше, чем AFVG.

1966 год был богат на политические и военные события, оказавшие непосредственное влияние на франко-британское сотрудничество.

В феврале 1966 года французский министр обороны проинформировал своего британского коллегу, что он готов отменить программу Mirage G, если из соглашения по AFVG будут удалены условия отмены программы. Британский министр обороны, уязвленный неудачей отмены программы Concorde, отказался от данного предложения.

22 февраля 1966 года правительство Великобритании опубликовало Белую книгу по обороне, в которой указывалось, что Королевский флот отказывается от самолетов с переменной стреловидностью крыла и что Королевские ВВС в настоящее время уделяют повышенное внимание ударным задачам. Для того чтобы заполнить пробел перед датой получения AFVG, предусматривался заказ на пятьдесят F-111.

После объявления о выходе Франции из военной организации НАТО (7 марта 1966 года) и выступления генерала де Голля в Пномпене (1 сентября 1966 года), в которой он возложил на США ответственность за войну во Вьетнаме, американское правительство выступило за запрет какого-либо экспорта французских военных самолетов, оснащенных двигателями Pratt & Whitney. Это стало смертельным ударом для программ самолетов, оснащенных такими силовыми установками. С выходом из военной организации НАТО Франция должна была самостоятельно обеспечивать противовоздушную оборону своей территории и, следовательно, отдавать приоритет задачам перехвата и уделять больше внимания задачам доставки ядерных зарядов вглубь территории противника. Данные задачи были мало совместимыми; более того, не совпадали системы вооружений.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: