История изобретения самого первого самолета в мире

Братья Райт сумели добиться успеха в издательской сфере, возглавляя редакционную коллегию «Новостей Вестсайда». Не найдя поддержки в лице крупных инвесторов, они начали вкладывать большую часть заработанных средств на реализацию своих авиационных опытов. Данное решение созрело у братьев еще в конце 19-го столетия, когда они были впечатлены результатами практических экспериментов инженера из Германии по имени Отто Лилиенталь. Мечта о создании планера, оснащенного двигателем, привела разработчиков из Америки к созданию первого прототипа современного самолета.

История авиации

Создателем первого прототипа летательного аппарата считается Леонардо Да Винчи, однако покорить небо инженерам и конструкторам удалось лишь несколько столетий спустя. Попытки создать прототип современного самолета были предприняты англичанином Джорджем, подробно изложившим принципы работы и постройки машины, которая могла бы взлетать и передвигаться в воздушном пространстве. Лавры отца-основателя сегодняшней авиации принадлежат Уильяму Хенсону, создавшему проект летательного аппарата в середине 19-го столетия.

Летательный аппарат Леонардо Да Винчи

Летательный аппарат Леонардо Да Винчи

В России данным проектом заинтересовался конструктор Телешов, запатентовавший воздухоплавательную систему с закрытым фюзеляжем. Первыми изобрели самолет, способный перенести пилота на весьма скромное расстояние, двое братьев Райт в 1903 году, на практике доказавшие возможность управляемых полетов. Самолет Можайского был разработан русским военным деятелем путем многократных экспериментов и корректировки конструкции.

Кто и когда изобрел первый самолет?

По одной из версий, первым считается самолет Можайского. Ученый представил проект воздухоплавательной машины в 1876 году чиновникам, работавшим в военном министерстве. Невзирая на непонимание со стороны государственных структур, Можайским были вложены денежные средства, привлеченные самостоятельно. Дебютные испытания завершились аварией, в результате которой аппарат был разрушен. Несмотря на данный факт, благодаря разработкам русского ученого развитие авиации вышло на новый виток.

Вы считаете, что первый самолет был изобретен братьями Райт?

ДаНет

Среди историков по сей день не стихают споры о том, кто же все-таки первым изобрел самолет. Ряд исследователей полагает, что слава пионера в области конструкции прототипа современного самолета принадлежит Альберту Сантосу-Дюмону, который сумел собрать летательную машину, пролетевшую более 6 десятков метров на высоте около 2,6 метра на испытаниях в 1906 году. Через месяц создатель первого самолета сумел установить первый рекорд, совершив перелет более 200 метров длиной на этом же прототипе.

12 и 17 декабря 1903 года состоялись дебютные испытания самолета, который изобрели братья Райт (Wright — англ.). Следующая модель Флайер-1», выпущенная в том же году, была оснащена бензиновым силовым агрегатом. Вес биплана составлял 280 кг, а пробные полеты на нем совершал как Уилбур, так и Орвил, пролетевший 6 десятков метров на трехметровой высоте.

История развития реактивных самолетов

Первым идею реактивного самолета предложил российский изобретатель Телешов. Попытка заменить винт поршневым двигателем была осуществлена в 1910 году конструктором из Румынии А. Коанда.

Эти попытки не увенчались успехом, и первое успешное испытание реактивного самолета прошло в 1939 году. Испытания проводила немецкая компания Heinkel, однако в ходе конструирования модели было допущено несколько ошибок:

  • неправильный выбор конструкции двигателя;
  • большой расход горючего;
  • частая потребность в дозаправке.

Тем не менее, первый прототип реактивного самолета смог развить высокую скорость набора высоты – более 60 метров за одну секунду полета.

Из-за допущенных конструктивных ошибок реактивный самолет не мог удаляться от аэродрома больше, чем на 50 километров, из-за необходимости частой дозаправки. Из-за ряда недостатков, первая удачная модель так и не попала в серийное производство.

Первым серийным самолетом стал Me-262 в 1944 году. Эта модель стала усовершенствованной версией предыдущей модели компании Heinkel.

Первый реактивный самолет

Затем разработку реактивной авиационной техники подхватили Япония и Великобритания.

Достижения братьев Райт

Одним из главных достижений братьев Райт считается рекордная величина продолжительности полета, составившая 12 секунд. В экспериментальном запуске машине удалось преодолеть дистанцию более, чем в 3 десятка метров. Уилбур и Орвилл Райт (Wright) с третьей попытки успешно запустили самолет, дальность полета которого составила 278 метров на высоте более 13 метров. Биплан был оснащен рядным четырехцилиндровым двигателем и рассчитан на одного члена экипажа в лице пилота.

Братья подписали контракт с американским Министерством обороны и рядом частных французских компаний. В 1909 году они официально зарегистрировали собственный авиастроительный завод, занимавшийся выполнением заказов для военных структур и инвесторов, вкладывавших средства в развитие гражданской и коммерческой авиации. В октябре того же года Уилбур совершил получасовой облета Статуи Свободы и центральной части Нью-Йорка.

Краткая биография

Биография Орвилла и Уилбура Райта начиналась в семье епископа, воспитывавшего семь детей. Отец мальчиков много времени проводил в поездках, и однажды привез им необычный подарок в виде игрушки-вертолета. Игрушечный летательный аппарат был выполнен из пробки, бамбука и бумаги, поэтому довольно быстро вышел из строя. Недолго думая, братья сделали похожее устройство, которое положило начало их гениальному тандему. Братьям не суждено было получить аттестаты о завершении средней школы, и некоторое время Уилбур и Орвилл предпринимали попытки наладить собственный бизнес, связанный с издательским делом.

Братья Райт

Позднее, на волне велосипедного бума, они решили открыть магазин с мастерской по ремонту двухколесного транспорта. Когда дела пошли в гору, братья наладили производство качественных велосипедов, пользовавшихся высоким спросом. Это детище братьев Райт в дальнейшем обеспечило их средствами для проведения первых опытов в деле самолетостроения. Весной 1986 года был совершен дебютный запуск летательного аппарата, функционирующего на паровом двигателе. Летом того же года известным авиатором Октавом Шанютом были проведены испытания планеров разных типов, часть из которых закончилась трагически. Цепочка событий впечатлила братьев, твердо решивших связать свою дальнейшую жизнь с самолетами.

Изобретение

История изобретения первого самолета началась с детального изучения братьями планера-биплана, созданного по проекту Херринга-Шанюта, удачно прошедшего испытания в 1896 году. Братьями Райт были внесены следующие изменения в конструкцию планера: руль высоты стал расположен спереди, а не сзади крыльев, что увеличило безопасность летательного аппарата. На испытаниях в 1990 году роль пилота выполнял груз из мешка, набитого песком. Планером управляли братья с поверхности земли. В следующем году они усовершенствовали существующий прототип, обладавший слабой подъемной силой.

Двигатель на первом самолете братьев Райт работал на четырех цилиндрах. Биплан развивал скорость до 47 км/час благодаря крутящему моменту, толкающие винты которого вращались в разных направлениях. Детище братьев Райт под названием «Flyer» сумело подняться в воздух на тягах собственного силового агрегата, выполненного на 80% из высококачественного алюминия. Мотор самолета представляет собой примитивный вариант современного инжекторного двигателя.

«Flyer» братьев Райт

Интересный факт! Цепная передача на первом самолете братьев Райт была реализована по аналогии с велосипедной передачей. На текущий момент взглянуть на оригинальную модель биплана, разработанную братьями, можно посетив один из залов Национального музея космонавтики и авиации при Смитсоновском университете.

Материалы, из которых делают самолет

К основным материалам, из которых делаются самолеты, относятся различные металлы, их сплавы и композиционные материалы. Рассмотрим подробнее принципы работы с этими материалами.

Алюминий

Большая часть конструкции самолета изготавливается из алюминия и его сплавов. Он идеально для этого подходит, прежде всего, из-за своего небольшого веса, а также из-за широких возможностей менять свои свойства в сочетании с различными добавками.

Так, для изготовления планеров, подвергающимся небольшим аэродинамическим нагревам, используется дуралюмин, представляющий собой высокопрочный алюминиевый сплав с примесью меди, марганца и магния. Для температурно нагружаемых оболочек планера и силовых элементов скелета самолета используются сплавы алюминия повышенной жаропрочности, с добавлением магния. Такие сплавы также используются для изготовления отдельных элементов конструкции двигателя, работающих в умеренном тепловом режиме (лопатки, крыльчатки, диски компрессора первого контура).

Из чего делают самолеты

Алюминиевые сплавы с добавлением кремния применяют для литья сложных по форме деталей, с небольшой нагруженностью. Эти сплавы обладают хорошей текучестью и заполняемостью в нагретом состоянии. Из них изготавливают: кронштейны, рычаги, фланцы. Их также используют для изготовления некоторых деталей двигателя: корпуса компрессоров, картеры, различные патрубки и др.

В общей сложности на алюминиевые конструкции самолета приходится до 80% от его общей массы.

Титан

Титан и титановые сплавы представляет особый интерес в авиастроении, в первую очередь, из-за своих возможностей выдерживать высокие температуры.

Из титана изготавливаются корпуса сверхзвуковых самолетов, передние края крыльев и стабилизаторов. Титановые сплавы широко применяются в конструкциях шасси, узлах крепления закрылков, в силовых элементах. В реактивных двигателях из титана изготавливаются детали, подвергающиеся высокотемпературным нагрузкам: лопатки компрессоров и диски компрессоров второго контура, кожухи камер сгорания, сопла реактивных двигателей.

Сталь

Сталь представляет собой сплав железа и углерода. Она довольно широко используется при изготовлении самолетов. В авиации в основном применяется конструкционная сталь с содержанием от 0,05 до 0,55% углерода. Из стали изготавливают отдельные элементы силового набора конструкции, детали шасси, болты, заклепки. Жаропрочная сталь идет на изготовление обшивок самолетов, развивающих большие скорости.

Первый русский авиаконструктор — А. Ф. Можайский

Советские СМИ утверждали, что придумали аэроплан первыми не братья Райт, а контр-адмирал, морской офицер и известный русский изобретатель А. Ф. Можайский. Александр Можайский проявлял неподдельный интерес к летательным аппаратам, над проектами которых он начал работать еще в 1877 году. Поскольку у двигателей внутреннего сгорания был серьезный недостаток — большой вес, Александр Федорович решил заменить их паровыми агрегатами. Первые 2 образца были заказаны в Великобритании. Испытал свой самолет Можайский А. Ф. в 1884 году, однако достоверных сведений о его крушении в документах не сохранилось.

Краткая биография изобретателя

Можайский Александр Федорович воспитывался в семье дочери зажиточного купца и адмирала. Высшее образование получил на базе Морского кадетского корпуса, сразу после окончания которого получил звание мичмана. 7 лет бороздил воды Белого и Балтийского морей, в результате чего дослужился до лейтенанта. Потерпел крушение на фрегате «Диана» неподалеку от японского порта. Во время своего пребывания в стране контр-адмирал глубоко проникся ее культурой, и после возвращения домой продолжал сохранять трепетное отношение к Японии, украшая свой дом живописью и предметами искусства Страны восходящего солнца.

Можайский Александр Федорович

Можайский Александр Федорович

Ряд компетентных источников утверждает, что А. Ф. Можайский — изобретатель первого в мире самолета. Идея спроектировать летательный аппарат пришла к офицеру после длительного наблюдения за полетом птиц и изучения их анатомических особенностей. Осенью 1876 года Можайский начал серию опытов с летательными аппаратами, оснащенных пружинными двигателями. Спустя несколько лет прототип самолета был готов, однако он потерпел крушение при проведении масштабных испытаний. После смерти контр-адмирала проект был приостановлен по решению властей.

Летательный аппарат Можайского

Военная энциклопедия редакции 1914 года утверждает, что русский исследователь и изобретатель, создавший первый самолет, упорно работал над проектом даже после прекращения его финансирования. Самолет Можайского функционировал на силовом агрегате внутреннего сгорания, который был модернизирован электрическим зажиганием и некоторыми другими нововведениями. Можайский самолет оснащался облегченной паровой машиной, заказанной у английской компании, поставлявшей агрегаты для миноносцев.

Паровой аэроплан Можайского

Первый самолет в мире по проекту Можайского был испытан в 80-х годах 19-го столетия, но потерпел неудачу и разбился при взлете из-за повреждений шасси и крыла. Документация с подробностями экспериментального полета не сохранилась до наших дней, поэтому точные сведения о данном опыте отсутствуют. Свидетели утверждают, что летательному аппарату удалось оторваться от земли и поднять в воздух механика, управлявшего самолетом. После смерти русского испытателя и военного деятеля работа над проектом была заморожена.

КРЫЛАТЫЕ МЕТАЛЛЫ И СПЛАВЫ

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Восьмимоторный гигант АНТ-20 («Максим Горький») был построен, как и многие металлические самолеты начала 30-х годов, из гофрированного алюминия.

При использовании традиционного сплава Д-16 пассажирский самолет Ту-154 получался слишком тяжелым.

Сварной корпус самолета МиГ-29 изготовлен из алюминиево-литиевого сплава 1420.

Массивные и очень ответственные детали шасси современных транспортных и пассажирских самолетов ОКБ им. С. В. Ильюшина изготовлены из титанового сплава ВТ-22. На снимке: Ил-76.

— Сталь и алюминий, титан и пластмассы, клеи и дерево, стекло и резина — ни один самолет не полетит без этих материалов. Все они разработаны или испытаны в ВИАМе

— В каждой лопатке турбины реактивного двигателя воплощены самые совершенные металлургические технологии. Стоимость одной монокристаллической лопатки соизмерима с ценой дорогого легкового автомобиля

— Испытательный ВИАМа. Грозит ли усталость металла разрушением самолета? Как найти скрытые дефекты в металле? Какими свойствами обладает новый материал? Во всем этом разбираются сотрудники Испытательного центра

— Армрестлинг как способ разрешения ученого спора, или Как Н. С. Хрущев летал в Америку

— «Состаренный» материал не значит «старый»

— Как кроили «шубу» для «Бурана»

— От воздействия высоких температур турбинные лопатки защищает плазма

— Чем совершеннее летательный аппарат, тем больше в нем неметаллических материалов . Уже спроектированы самолеты, на две трети состоящие из композитных материалов и пластмасс

— Утром лаборант, вечером студент. И все это — не выходя из родной лаборатории. Если государство не готовит специалистов, их приходится учить на месте

— Коррозия — враг любого металла. Ржавеет даже нержавеющая сталь. Как лечить язвы на теле «Рабочего и колхозницы»?

— Склеить можно все что угодно. Нужен только подходящий клей. В небе летают склеенные самолеты, и это не детские модели, а большие транспортные воздушные суда.

Первые шаги нашей авиации связаны с закупкой иностранных самолетов. Были они по большей части деревянными, фюзеляж и крылья обтягивались тканью. Конечно же такие «матерчатые» самолеты не могли выдерживать значительных скоростных и температурных нагрузок, нужны были иные материалы, прежде всего — металл.

Идея строить самолеты из алюминия возникла в Германии. Там же появились первые сплавы, разработанные специально для самолетов. Их назвали дуралюминами. Подобный сплав был создан и у нас в стране в середине 20-х годов. Он получил марку Д-1 — это сплав алюминия с медью и небольшим количеством магния.

В 1932 году академик А. А. Бочвар разработал теорию рекристаллизации алюминиевых сплавов, которая легла в основу создания легких сплавов. В стране к тому моменту существовала производственная база: первый алюминиевый (расположенный в селе Кольчугино Владимирской области) выпускал гладкие и гофрированные листы технического алюминия — это алюминий с небольшими добавками марганца и магния. Такой алюминий обладал достаточной прочностью, был пластичен и потому использовался для обшивки фюзеляжей летательных аппаратов.

Однако материал для новых скоростных самолетов должен был иметь совершенно иные качества. И через некоторое время в лаборатории алюминиевых сплавов ВИАМа (созданной одновременно с открытием института в 1932 году) разработали сплав Д-16, который применялся в самолетостроении почти до середины 80-х годов. Это сплав на основе алюминия с содержанием 4-4,5% меди, около 1,5% магния и 0,6% марганца. Из него можно было делать практически любые детали самолета: обшивку, силовой набор, крыло.

Но скорости и высота полетов росли. Требовались высокопрочные сплавы. В середине 50-х годов возглавивший лабораторию алюминиевых сплавов академик И. Н. Фридляндер совместно со своими коллегами В. А. Ливановым и Е. И. Кутайцевой разрабатывает теорию легирования высокопрочных сплавов. Введение в систему алюминий — медь цинка и магния позволило резко увеличить прочность материала. Так возник сплав В-95, обладающий прочностью 550-580 Мпа (~ 5500- 5800 кгс/см2) и в то же время имеющий хорошую пластичность. У него был один изъян: недостаточная коррозионная стойкость, что, однако, устранялось путем двухступенчатого искусственного старения.

Новый сплав получил признание авиастроителей не сразу. В это время А. Н. Туполев создавал новый пассажирский лайнер Ту-154. Проект никак не укладывался в заданные весовые характеристи ки, и тогда генеральный конструктор сам позвонил Фридляндеру, обратившись за помощью, на что тот конечно же предложил использовать новый сплав. Проект новой машины переработали. Сплав В-95 нашел свое место для верхней поверхности крыла, из него изготовили прессованные панели и стрингеры, значительно снизив вес самолета. Такие же исследования параллельно шли в США. Там возникли сплавы серии 7000, в частности сплав 7075 — полный аналог нашего сплава.

Нагрузки, которые испытывает крыло самолета, неравноценны. Если верх крыла работает в основном на сжатие, то нижняя часть — на растяжение. Поэтому ее по-прежнему делали из дуралюмина Д-16, имеющего более высокие пластичность и порог усталости. Но и этот сплав претерпел серьезную модификацию за счет повышения чистоты по примесям при литье слитков. Технологические усовершенствования были столь значительны, что появился фактически новый материал — сплав 1163, который и в настоящее время успешно используется в нижних обшивках крыла и всего фюзеляжа.

Увеличение эксплуатационного ресурса самолетов всегда оставалось и остается задачей номер один. Добиться еще большей надежности и долговечности материалов можно, изменив структуру металла — «измельчив зерно». Для этого в сплавы начали вводить небольшие количества (до 0,1%) циркония. Величина зерна металла действительно резко уменьшилась, ресурс возрос. Одновременно создавались специальные ковочные сплавы, предназначенные для самых ответственных, силовых конструкций лайнеров. Так был разработан сплав 1933, превосходящий по своим параметрам зарубежные аналоги. Из него изготовляют детали силового набора и шпангоуты. Специалисты европейской авиастроительной провели испытания нового материала и приняли решение использовать его в своих самолетах серий А-318 и А-319.

К сожалению, процесс весьма выгодного сотрудничества приостановлен. Причина в том, что акции двух основных российских производителей алюминиевой продукции — Самарского и Белокалитвенского металлургических комбинатов — выкуплены американской . Значительная часть оборудования на предприятиях демонтирована, технологическая цепочка нарушена, квалифицированные кадры разошлись, и производство фактически прекратилось. Сейчас эти предприятия выпускают в основном фольгу, которая идет на изготовление пищевых банок и упаковок…

И хотя в настоящее время при посредстве российского правительства между (она теперь называется так), ВИАМом и авиационными конструкторскими бюро достигнуты договоренности о возобновлении выпуска так необходимых нашей авиационной промышленности материалов, процесс восстановления идет крайне медленно и болезненно.

ВИАМ стал родоначальником серии сплавов пониженной плотности. Это совершенно новый класс материалов, содержащих литий. Первый такой сплав создал академик И. Н. Фридляндер со своими учениками еще в 60-х годах — на четверть века раньше, чем где-либо в мире. Его практическое использование, правда, поначалу было ограничено: такой активный элемент, как литий, требует особых условий выплавки. Первый промышленный алюминиево-литиевый сплав (его марка 1420) был создан на основе системы алюминий — магний с добавлением 2% лития. Его использовали в КБ А. С. Яковлева при строительстве самолетов вертикального взлета для палубной авиации — именно для таких конструкций экономия веса имеет особое значение. Як-38 эксплуатируется до сих пор, и никаких нареканий к сплаву нет. Более того. Оказалось, что детали из этого сплава обладают повышенной коррозионной стойкостью, хотя алюминиево-магниевые сплавы и сами по себе мало подвержены коррозии.

Сплав 1420 можно сваривать. Это его свойство использовали при создании самолета МиГ-29М. Выигрыш в весе при строительстве первых опытных образцов самолета за счет пониженной плотности сплава и исключения большого количества болтовых и клепочных соединений достигал 24%!

В настоящее время модификацией этого сплава — сплавом 1424 — весьма заинтересовались специалисты «Эрбаса». На заводе в городе Кобленце (ФРГ) из сплава откатали широкие листы длиной 8 м, из которых изготовили полноразмерные элементы конструкции фюзеляжа. Ребра жесткости из того же материала приварили лазерной сваркой, а элементы соединили между собой сваркой трением, после чего отправили на ресурсные испытания во Францию. Несмотря на то что некоторым деталям намеренно нанесли повреждения (для оценки работоспособности в экстремальной ситуации), после 70 тысяч циклов нагрузки конструкция полностью сохранила эксплуатационные свойства.

Еще один сплав с литием, созданный в ВИАМе, — 1441. Его главная особенность в том, что из него можно делать листы рулонной прокатки толщиной 0,3 мм с сохранением высоких прочностных качеств. Конструкторское бюро имени Бериева использовало сплав для изготовления обшивки своего гидросамолета Бе-103. Эту небольшую — всего на четыре человека — машину, толщина обшивки которой 0,5-0,7 мм, выпускает завод в Комсомольске-на-Амуре. Ее вес на 10% меньше, чем аналогичных моделей из традиционных материалов. Партию таких самолетов уже купили американцы.

Тонкий, но прочный прокат необходим для создания недавно появившегося нового класса материалов — слоистых алюмостеклопластиков, которые в России называются «сиал», а за границей — «глэр». Материал представляет собой многослойную конструкцию: чередование слоев алюминия и стеклопластика. У него немало преимуществ перед монолитными. Во-первых, стеклопластик можно армировать искусственными волокнами, на треть увеличивая прочность. Но главный выигрыш в том, что, если в конструкции появляется трещина, она растет на порядок медленней, чем в монолитных материалах. Именно этим сиалы, или глэры, в первую очередь заинтересовали авиастроителей. Из такого материала впервые изготовлена верхняя часть обшивки фюзеляжа аэробуса А-380 в наиболее ответственных местах — перед крылом и после крыла. Ресурсные испытания показали, что трещина в таком материале при рабочих нагрузках практически не растет. Поэтому глэры можно использовать как преграды-стопперы для предотвращения роста трещин в виде вставок в верхние обшивки фюзеляжа, где требуются особо высокая надежность и долгий ресурс службы.

Титан, как и алюминий, тоже имеет право называться небесным или крылатым. Лаборатория титановых сплавов была создана в институте в 1951 году. Ее основатель профессор С. Г. Глазунов изобрел установку для литья титана и, собственно, создал первый титановый сплав. Вторая подобная установка была с помощью ВИАМа построена во Всесоюзном институте легких сплавов (ВИЛС), а потом мы вместе внедряли разработанные технологические процессы на металлургическом комбинате в Верхней Салде, который сейчас является основным производителем титановой продукции в стране. В советское время комбинат выпускал более 100 тыс. тонн такой продукции. После распада СССР производство сократилось в несколько раз. Новому директору завода В. В. Тютюхину пришлось приложить огромные усилия, чтобы исправить положение. После резкого спада производства завод начал подниматься. Сейчас выпуск титановой продукции составляет 25 тыс. тонн в год. Большая ее часть (около 80%) поставляется за границу по заказам ведущих самолетостроительных концернов. В связи с оживлением авиастроительной промышленности в России возникла насущная необходимость создания альтернативного производства. Гиганту, каким является комбинат, невыгодно выпускать небольшие партии продукции. Заказы же российских авиапроизводителей пока невелики — 3-5 тонн, а цикл изготовления очень длительный и доходит до года. Такое производство может быть создано на базе ВИАМа, ВИЛСа и Ступинского металлургического комбината, где, собственно, и перерабатываются слитки, получаемые из Верхней Салды.

В ВИАМе создано более полусотни титановых сплавов различного назначения, из которых сегодня серийно используется около тридцати. Сейчас доля титановых сплавов в самолете в зависимости от его типа и назначения колеблется от 4 до 10-12%. Высокопрочные сплавы из титана, например ВТ-22, более четверти века используются для изготовления сварных шасси Ил-76 и Ил-86. Это сложные, массивные детали на Западе начинают делать из титана только сейчас. В ракетной технике доля титана намного выше — до 30%.

Созданные в ВИАМе высокотехнологичные сплавы ВТ-32 и ВТ-35 в отожженном состоянии очень пластичны. Из них можно формовать сложные детали, которые после искусственного старения приобретают чрезвычайно высокую прочность. Когда в начале 1970-х годов в КБ Туполева создавался стратегический бомбардировщик Ту-160, на московском был построен специальный цех для изготовления титановых деталей центроплана. Эти самолеты летают до сих пор, правда, в России их осталось только одна эскадрилья.

Сегодня перед ВИАМом стоит задача создания титановых сплавов, надежно работающих при температурах 700-750оС. К сожалению, все металловедческие возможности, использовавшиеся при создании традиционных сплавов, уже реализованы. Требуются новые подходы. В этом направлении в лаборатории идут исследования по созданию так называемых интерметаллидных соединений на базе титан — алюминий.

Алюминиево-бериллиевые сплавы (их называют АБМ) исследуются и создаются на нашем предприятии уже 27 лет. Первый самолет с использованием такого сплава построил конструктор П. В. Цыбин.

Сплавы АБМ выгодно отличаются от других алюминиевых сплавов более высокой усталостной прочностью и уникальной акустической выносливостью. Сейчас они нашли применение в сварных конструкциях космических аппаратов, в том числе в серии хорошо известных межпланетных станций «ВЕНЕРА».

Интересен и сам бериллий, у которого модуль упругости на 30-40% выше, чем у высокопрочных сталей, а коэффициенты термического расширения близки, что позволило применять его в гироскопах.

В ВИАМе разработана технология изготовления тонкой вакуумно-плотной фольги и дисков и пластин из нее. Разработана технология пайки такой фольги с другими конструкционными материалами, и налажено серийное производство узлов рентгеновских аппаратов как для российских предприятий, так и для зарубежных фирм.

Еще один наш филиал организован в Поволжье в начале 1980-х годов, во время создания самого большого авиационного завода в Ульяновске, который выпускал гиганты авиации — «Русланы» и «Мрии». Для технологического сопровождения этих самолетов и была создана специальная лаборатория.

Одна из ее задач — внедрение в авиастроение композиционных материалов. Это — ближайшее будущее самолетостроения. Например, «Боинг-787», который готовится к выпуску через два года, на 55-60% будет состоять из композиционных материалов. Весь планер: фюзеляж, крыло, оперение — строится из композиционных материалов — углепластиков. Доля алюминия сократится до 15%. Углепластики — чрезвычайно заманчивый материал для самолетостроителей. Они обладают высокой удельной прочностью, малым весом, довольно приличными ресурсными характеристиками. Угроза разрушения из-за образования трещин снижается на порядки. Хотя, конечно, в отношении этих материалов остается ряд вопросов, которые до сих пор не решены. Было установлено, например, что в месте контакта углепластика с алюминием из-за возникновения гальванической пары развивается коррозия. Поэтому в таких местах алюминий пришлось менять на титан.

Когда создавался Ульяновский филиал, доля композитных материалов в конструкции отечественных летательных аппаратов была не очень велика. Тем не менее мы потихоньку начали обучать работе технологов, рабочих… Потом настали трудные времена, весь завод находился на грани закрытия, но филиал выжил. Постепенно производство восстанавливалось, и, хотя до сих пор оно наполовину законсервировано, есть несколько заказов на Ту-204, есть заказы из Германии на изготовление «Русланов». А значит, есть поле деятельности для нашей лаборатории.

Второе направление работы Ульяновского филиала — специальные, эрозионно- и коррозиестойкие покрытия.

При разложении металлоорганических жидкостей в вакууме на поверхностях образуются покрытия из хрома и карбидов хрома. Регулируя процесс, можно получать покрытия, содержащие любые соотношения этих компонентов — от чистого хрома до чистых карбидов. Твердость хромированного покрытия — 900-1000 Мпа, карбидного — вдвое выше — около 2000 Мпа. Но, чем выше твердость, тем больше хрупкость. Между этими крайностями и находят искомое в каждом отдельном случае.

Другой путь достижения нужных результатов обеспечивают нанотехнологии. В гальванические хромосодержащие ванны вводят наночастицы карбидов и оксидов металлов размером от 50 до 200 нм. Изюминка процесса в том, что сами эти частицы в состав покрытия не входят. Они лишь усиливают активность осаждаемого компонента, создают дополнительные центры кристаллизации, благодаря чему покрытие получается более плотным, более коррозиестойким, обладает лучшими противоэрозионными свойствами.

И в заключение еще об одном уникальном качестве института: в СССР существовала неплохая система, надежно гарантирующая качество конечного продукта предприятия. В ВИАМе эта система сохранилась и поныне. Если конструкторское бюро или частная компания закупают какой-то продукт, перед использованием они предпочитают передать его в ВИАМ на испытание. Нам по-прежнему доверяют.

См. в номере на ту же тему

Е. КАБЛОВ — ВИАМ — национальное достояние.

И. ДЕМОНИС — Во все лопатки.

М. БРОНФИН — Испытатели — исследователи и контролеры.

Академики дают разрешение на беспосадочный перелет Н. С. Хрущева в Нью-Йорк на сверхдальнем самолете ТУ-114 .

И. ФРИДЛЯНДЕР — Старение — не всегда плохо.

Б. ЩЕТАНОВ — Тепловая защита «Бурана» началась с листа кальки.

С. МУБОЯДЖЯН — Плазма против пара: победа за явным преимуществом .

БЮРО НАУЧНО-ТЕХНИЧЕСКОЙ ИНФОРМАЦИИ.

Э. КОНДРАШОВ — Без неметаллических деталей самолеты не летают.

И. КОВАЛЕВ — В науку — со школьной скамьи .

С. КАРИМОВА — Коррозия — главный враг авиацииc.

А. ПЕТРОВА — Посадить на клей.

Сантос Дюмонт и 14 Бис

Знаменитый авиаконструктор и автор первого управляемого воздушного шара родился в Бразилии. Большая часть его сознательной жизни прошла в Париже, где он занимался постройкой дирижабля, а позднее вертолетов и самолетов. Наиболее известным летательным аппаратом, сконструированным по проекту Сантоса Дюмонта, считается «14 Бис», оснащенный подвижными поверхностями, позволявшими добиться высокой боковой стабильности.

Альберто Сантос-Дюмон

Альберто Сантос-Дюмон

Биплан отличается коробчатой конструкцией и является первым в мире самолетом, взлетавшим исключительно при помощи собственного силового агрегата.

Интересный факт! Бразильский изобретатель является мировым рекордсменом по максимальной дальности полета. Совершил он его на биплане «14 Бис», который был экипирован тяжелым двигателем.

Первые военные самолеты

Изобретение самолета «Флаер» Братьев Райт и «14-Бис» Сантоса-Дюмона не осталось незамеченным военными. Если американские предприниматели изначально разрабатывали летательный аппарат для расширения возможностей армии США, то французский изобретатель бразильского происхождения был настроен решительно против применения авиации в вооруженных конфликтах. Первый самолет, который был приобретен войсками Америки — биплан, разработанный братьями Райт и развивавший скорость до 70 км/час.

Первым русским самолетом с установленным на нем пулеметом стал «Дыховичный-1», выполненный по принципу винтового биплана. Самолет был предназначен для атаки объектов и целей, расположенных на поверхности земли. На развитие авиации повлияла Первая мировая война. Летательные аппараты стали оснащаться турелями, позволявшими пулеметам вращаться на 360 градусов, а также синхронизаторами стрельбы.

Первые пассажирские самолеты

Первый полет прототипа современного пассажирского самолета состоялся в 1914 году благодаря стараниям ученого Сикорского и успешным испытаниям «Ильи Муромца», совершившего воздушный перелет на рекордную дистанцию. Судно смогло поднять в воздух дюжину пассажиров, а в Первую мировую войну было задействовано для транспортировки снарядов. Его салон был оборудован климатической системой и комфортабельными креслами.

Самолет Илья Муромец

Самолет Илья Муромец

Ряд источников утверждает, что первый самолет, катавший пассажиров — «Limousine Bleriot», спроектированный французскими инженерами.

Самолет Limousine Bleriot

Самолет Limousine Bleriot

В 20-е годы 20-го столетия в Советском Союзе был разработан самолет «К-1», созданный Константином Алексеевичем Калининым. Летательный аппарат выполнен в форм-факторе одномоторного подкосного высокоплана. Его конструкция состоит из гофрированного алюминия на сварном каркасе из труб, выполненных из качественной стали.

Самолет «К-1»

Самолет «К-1»

Первый пассажирский самолет, попавший в массовое производство в США — «Ford Trimotor», прозванный «Жестяным Гусем» за особенности своего внешнего вида. Инвестиции в развитие пассажирского авиатранспорта сделал известный предприниматель Генри Форд. Презентация его трехмоторного прототипа состоялась летом 1926 года.

Самолет Ford Trimotor

Самолет Ford Trimotor

Планеры и беспилотные машины

В то время как приверженцы воздухоплавания совершенствовали привод и улучшали способы управления своими машинами, в мире по-прежнему находились люди, желавшие летать, как птицы, — с помощью крыльев и независимо от воли ветра. К таковым принадлежал британский аристократ Джордж Кейли. В 1799 году он разработал схему планера, уже очень напоминавшего современный. Машина была снабжена хвостовым оперением, которое должно было обеспечить ее управляемость, а пилот помещался ниже центра масс, что способствовало устойчивости аппарата в воздухе.

Сэр Дж. Кейли — один из создателей планера

В 1804 году планер Кейли совершил первый полет. В последующие 50 лет изобретательный лорд продолжил работать над теорией полетов, введя в новую науку — аэродинамику — такие термины, как «подъемная сила» и «лобовое сопротивление».

В своих поисках Кейли вплотную приблизился к идее оснащения летательного аппарата двигателем. В 1849 году он поднял в воздух первую полноценную летающую машину с пороховым двигателем, по одним данным, беспилотную, по другим — с 10-летним пассажиром на борту.

Рисунок летательного аппарата Дж. Кейли. Опубликован в 1852 году

В 1853 году лорд Кейли совершил повторный полет, оснастив машину таким же двигателем и посадив на борт своего кучера. Пролетев по воздуху около 100 м, первый в мире пилотируемым самолет упал на землю. К счастью, кучер остался жив.

В 1848 году соотечественник Кейли Джон Стрингфеллоу испытал свою машину, оснащенную паровым двигателем. Эта модель была беспилотной и, сорвавшись с направляющей проволоки, сумела пролететь около 10 м. В 1868 году французский пилот Жан-Мари Ле Бри впервые сумел подняться на своем летательном аппарате выше стартовой точки. Его машина называлась «Альбатрос» и приводилась в действие с помощью конной тяги. Пилот достиг 100-метровой высоты, преодолев при этом расстояние в 200 м.

«Альбатрос» Ж.-М. Ле Бри

Модель летательного аппарата Дж. Стрингфеллоу в Лондонском научном музее

В 1874 году соотечественник Жана-Мари Ле Бри Феликс дю Темпл построил большой летательный аппарат из алюминия — моноплан. Размах крыла достиг 13 м, а вес конструкции без пилота составил 80 кг. Планер мог стартовать с высокого трамплина и благополучно приземляться.

Таким образом, к 1880-м годам стало ясно, что создание летающей машины тяжелее воздуха, способной преодолевать значительные расстояния над землей, возможно. Оставалось найти для нее подходящий двигатель.

Э. Сведенборг

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: